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ABSTRACT

Brain disorders are characterized bymorphological deformations in shape and size
of (sub)cortical structures in one or both hemispheres. These deformations cause
deviations from the normal pattern of brain asymmetries, resulting in asymmet-
ric lesions that directly a�ect the patient’s condition. It is hence clinically crucial
to de�ne normal brain asymmetries for the identi�cation and detection of these
deformations (brain anomalies) early for proper diagnosis and treatment.
Most automatic computational methods in the literature rely on supervised ma-

chine learning to detect or segment anomalies in brain images. However, these
methods require a large number of high-quality annotated training images, which
is absent for most medical image analysis problems. Besides, they are only de-
signed for the lesions found in the training set, and some methods still require
weight �ne-tuning (retraining) when used for a new set of images. In contrast, un-
supervised methods aim to learn a model from unlabeled healthy images, so that
an unseen image that breaks priors of this model, i.e., an outlier, is considered an
anomaly. As these methods do not use labeled images, they are less e�ective in de-
tecting lesions from a speci�c disease when compared to supervised approaches
trained from labeled images for the same disease. For the same reason, however,
unsupervised methods are generic in detecting any lesions, e.g., coming from mul-
tiple diseases, as long as these notably di�er from healthy training images.
This thesis addresses the development of solutions to leverage unsupervisedma-

chine learning for the detection/analysis of abnormal brain asymmetries related
to anomalies in magnetic resonance (MR) images. First, we propose an automatic
probabilistic-atlas-based approach for anomalous brain image segmentation. Its
goal is to de�ne our target macro-regions of interest — i.e., right and left hemi-
spheres, cerebellum, and brainstem — to improve the preprocessing, restrict the
analysis, and compute hemispheric asymmetries in some cases. Second, we ex-
plore an automatic method for the detection of abnormal hippocampi from ab-
normal asymmetries. Our solution uses deep generative networks and a one-class
classi�er to model normal hippocampal asymmetries inside pairs of 3D patches
from healthy subjects and detect abnormal hippocampi. Third, we present a more
generic framework to detect abnormal asymmetries in the entire brain hemi-
spheres. Our approach extracts pairs of symmetric regions — called supervoxels —
in both hemispheres of a test image under study. One-class classi�ers then analyze
the asymmetries present in each pair. This method is limited to detect asymmetric
lesions only in the hemispheres. Finally, we generalize the previous solution for
the detection of (a)symmetric lesions based on registration errors. Experimental
results on 3D MR-T1 images from healthy subjects and patients with a variety of
lesions show the e�ectiveness and robustness of the proposed unsupervised ap-
proaches for brain anomaly detection.
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SAMENVAT T ING

Hersenaandoeningen worden gekenmerkt door morfologische vervormingen van
vorm en grootte van (sub)corticale structuren in één of beide hemisferen. Deze ver-
vormingen veroorzaken afwijkingen van het normale patroon van hersenasymme-
trieën, resulterend in asymmetrische laesies die de conditie van de patiënt direct
beïnvloeden. Het is daarom klinisch cruciaal om normale hersenasymmetrieën te
de�niëren voor het vroegtijdig identi�ceren en detecteren van deze vervormingen
(hersenafwijkingen) voor een juiste diagnose en behandeling.

De meeste automatische berekeningsmethoden in de literatuur zijn gebaseerd
op supervised machine learning om afwijkingen in hersenscans te detecteren of
te segmenteren. Deze methoden vereisen echter een groot aantal geannoteerde
trainingsbeelden van hoge kwaliteit, die bij de meeste medische beeldanalysepro-
blemen ontbreken. Bovendien zijn ze alleen ontworpen voor de laesies die in de
trainingsset voorkomen, en sommige methoden vereisen nog steeds �ne-tuning
van het gewicht (retraining) wanneer ze worden gebruikt voor een nieuwe set af-
beeldingen. Daarentegen richten unsupervisedmethoden zich op het leren van een
model van niet-gelabelde gezonde afbeeldingen, zodat een onbekende afbeelding
dat de priors van dit model breekt, i.e., een outlier, als een afwijking wordt be-
schouwd. Aangezien deze methoden geen gelabelde afbeeldingen gebruiken, zijn
ze minder e�ectief in het detecteren van laesies van een speci�eke ziekte in verge-
lijking met supervised methoden die zijn getraind op gelabelde afbeeldingen voor
dezelfde ziekte. Om dezelfde reden zijn unsupervised methoden echter generiek
voor het opsporen van laesies, e.g. afkomstig van meerdere ziekten, zolang deze
verschillen van gezonde trainingsbeelden.

Dit proefschrift behandelt de ontwikkeling van oplossingen om unsupervised
machine learning toe te passen voor de detectie / analyse van abnormale her-
sensymmetrieën gerelateerd aan afwijkingen in magnetische resonantie (MR) -
beelden. Ten eerste stellen we een automatische probabilistic-atlas-based methode
voor voor afwijkende hersenbeeldsegmentatie. Het doel is om onze beoogde ma-
croregio’s te de�niëren – i.e., de rechter en linker hersenhelft, het cerebellum en de
hersenstam - om de preprocessing te verbeteren, de analyse te beperken en in som-
mige gevallen hemisferische asymmetrie te berekenen. Ten tweede onderzoeken
we een automatische methode voor de detectie van abnormale hippocampi van-
uit abnormale asymmetrieën. Onze oplossing maakt gebruik van deep generative
networks en een one-class classi�er om normale hippocampale asymmetrieën in
paren van 3D-patches van gezonde proefpersonen temodelleren en abnormale hip-
pocampi te detecteren. Ten derde presenterenwe eenmeer generiek raamwerk om
abnormale asymmetrieën in de gehele hersenhelften te detecteren. Onze benade-
ring extraheert paren van symmetrische regio’s - supervoxels genaamd - in beide
hemisferen van een bestudeerd testbeeld. One-class classi�ers analyseren vervol-
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gens de asymmetrieën die in elk paar aanwezig zijn. Deze methode is gelimiteerd
tot het detecteren van asymmetrische laesies in de hemisferen. Ten slotte genera-
liseren we de vorige oplossing voor het detecteren van (a)symmetrische laesies op
basis van registratiefouten. Experimentele resultaten op 3D MR-T1-afbeeldingen
van gezonde proefpersonen en patiënten met een verscheidenheid aan laesies to-
nen de e�ectiviteit en robuustheid van de voorgestelde unsupervised methoden
voor detectie van hersenafwijkingen.
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RE SUMO

Distúrbios cerebrais são caracterizados por deformações morfológicas na forma e
tamanho de estruturas (sub)corticais em um ou ambos hemisférios. Estas defor-
mações causam desvios do padrão de normal das assimetrias cerebrais, resultando
em lesões assimétricas que diretamente afetam a condição do paciente. É clinica-
mente crucial, portanto, de�nir assimetrias cerebrais normais para a identi�cação
e detecção precoce destas deformações (anomalias cerebrais) para um diagnóstico
e tratamento adequados.

A maioria dos métodos computacionais presentes na literatura con�am em
aprendizado de máquina supervisionado para detectar ou segmentar anomalias
em imagens de cérebro. Entretanto, estes métodos requerem um grande conjunto
de imagens de treinamento de alta qualidade anotadas, que é escasso para a maio-
ria dos problemas de análise de imagens médicas. Além disso, eles são projetados
para as lesões encontradas no conjunto de treinamento, sendo que alguns métodos
ainda requerem re�namento dos pesos do modelo (retreinamento) quando usados
por um novo conjunto de imagens. Em contraste, métodos não-supervisionados
visam aprender um modelo a partir de imagens saudáveis não-rotuladas, de ma-
neira que uma imagem inédita que quebre condições prévias deste modelo, i.e.,
um outlier, é considerada uma anomalia. À medida que estes métodos não usam
imagens rotuladas, eles são menos efetivos em detectar lesões de uma doença espe-
cí�ca, quando comparados com abordagens supervisionadas treinadas a partir de
imagens rotuladas para a mesma doença. Pela mesma razão, entretanto, métodos
não-supervisionados são genéricos em detectar qualquer lesão, por exemplo le-
sões provenientes de múltiplas doenças, uma vez que elas notavelmente diferente
de imagens de treinamento saudáveis.

Esta tese endereça o desenvolvimento de soluções para alavancar o aprendizado
de máquina não-supervisionado para a detecção/análise de assimetrias cerebrais
anormais relacionadas a anomalias em imagens de ressonância magnética (RM).
Primeiramente, nós propomos uma abordagem automática baseada em atlas pro-
babilístico para a segmentação de cérebros anormais. Seu objeto é de�nir nossas
macrorregiões de interesse — i.e., hemisfério esquerdo e direito, cerebelo e tronco
cerebral — para, assim, melhorar o pré-processamento, restringir a análise e com-
putar assimetrias cerebrais em alguns casos. Em segundo lugar, nós exploramos
um método automático para a detecção de hipocampos anormais a partir de as-
simetrias anormais. Nossa solução usa redes neurais generativas e classi�cadores
de classe única para modelar assimetrias hipocampais normais dentro de pares
de janelas 3D de pessoas saudáveis, e então detectar hipocampos anormais. Em
terceiro lugar, nós apresentamos um arcabouço mais genérico para detectar assi-
metrias anormais em todas as regiões dos hemisférios. Nossa abordagem extrai
pares de regiões simétricas — chamadas supervoxels — em ambos os hemisférios
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de uma imagem de teste sob análise. Classi�cadores de classe única então analisam
as assimetrias presentes em cada par. A detecção deste método limita-se a lesões
assimétricas encontradas nos hemisférios. Finalmente, nós generalizamos a solu-
ção anterior para a detecção de lesões (as)simétricas baseadas em erros de registro.
Os resultados experimentais em imagens de RM 3D de pessoas saudáveis e pacien-
tes com uma variedade de lesões mostram a efetividade e robustez das abordagens
não-supervisionadas propostas nesta tese para a detecção de anomalias cerebrais.
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1I N TRODUCT ION

The brain is the most complex organ in a vertebrate’s body and serves the cen-
tral nervous system (CNS) — a complex collection of billions of specialized nerves
and cells known as neurons that transmit signals between di�erent parts of the
body [1, 2]. CNS represents a communication network of the organism that de-
tects and responds to changes in its internal and external environment. Any dys-
functionality can severely impact a person’s health and quality of life, resulting in
problems as memory loss, motor skills, and mobility.
A brain disorder consists of any condition that a�ects one’s brain. These condi-

tions aremainly caused by genetic abnormalities, illness, and traumatic injuries [3].
Brain disorders are a major public health problem in the world [4]. According to
reports presented in 2010 by the European Brain Council — an alliance of all major
European organizations interested in brain diseases — about one-third of all Eu-
ropean citizens had at least one brain disorder [4, 5]. Most cases consist of minor
disorders such as migraine, whereas neuromuscular disorders and brain tumors
are less prevalent. However, the diagnoses and treatments for the latter are more
complex and very expensive. For example, the cost of the treatment of brain tu-
mors per subject is 33,900 euros on average, whereas the one for migraine is about
662 euros [4].
Following the above, it is hence clinically crucial to detect brain lesions early

for proper diagnosis and treatment. There is a variety of possible treatments, such
as chemotherapy and surgical resection. The choice of treatment usually depends
on the type of brain lesion, its anatomy, and location [6, 7]. This information is
obtained from medical imaging.

1.1 ������� �������

Medical images are visual representations of physical features measured from the
interior of a body for clinical analysis, medical diagnoses, and intervention [8].
They show attributes from such body structures in a noninvasive manner.1

The �rst medical image dates the late 19th century from the discovery of X-rays
by the German Wilhelm Röntgen. For the �rst time in history, an image — cre-
ated by marked X-ray absorption — allowed noninvasive insights in the human
body [9]. This imaging technique was called radiography. The more X-rays a tis-
sue absorbs, the whiter it is in the X-ray image (Fig. 1.1a). Thus, dense tissues (e.g.,
bones) appear white, whereas fat and other soft tissues look gray or even black

1 Noninvasive denotes a medical procedure that does not involve the introduction of instruments into
the patient’s body.
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(e.g., the air inside the lungs). Soon after its introduction, radiography quickly be-
came essential for medical diagnosis. Currently, digital X-ray images are widely
used to examine bone fractures and detect certain diseases, e.g., pneumonia and
pulmonary edema, in soft tissues [8].

New medical imaging techniques and technologies have emerged in the last 60
years, in particular, Computed Tomography (CT) and Magnetic Resonance Imag-
ing (MRI). A CT scanner takes a series of X-rays emitted at di�erent angles to
generate a detailed volumetric image (3D image) of a particular section of the
body. Elements of a 3D image are called voxels, by analogy to the pixel elements
of a 2D image. Voxels are de�ned by their 3D coordinates and their corresponding
values. CT images are more expensive to acquire than conventional X-ray images
but yield a better way to separate between various types of tissues, atop the ability
to reason about spatial structures in the body. Some common uses of CT images
consist of diagnosing injuries from trauma, determining the location of a tumor,
and detecting the location of blood clots.

MRI scanners do not use radiation during imaging. Instead, they produce a pow-
erful �xed magnetic �eld around the patient so that radiofrequency waves excite
protons within the body. As the excited protons relax back to their normal posi-
tion, they emit signals that are captured and mapped into a 3D image [9, 10]. MRIs
provide more detailed information about inner organs with superior soft-tissue
contrast and anatomic detail compared to X-ray and CT images (Fig. 1.1). How-
ever, they are more expensive and take considerably more time to generate.2 MRI
is usually the commonly chosen image modality for structural brain analysis [11].

Di�erent types of MR images can be obtained during the examination. The most
common types are T1 and T2. Both types accentuate di�erent characteristics of
tissues resulting in images with distinct appearances. Water-rich structures — e.g.,
the cerebrospinal �uid (CSF) found in the brain and spinal cord — are dark in
T1 and very bright in T2. Conversely, structures containing fat are considerably
brighter in T1 than T2. For brain images, graymatter is darker thanwhitematter in
T1. The opposite is true for T2 — compare the pair of brain slices in Fig. 1.1c. There-
fore, T1 images are more e�ective for analyzing anatomical structures, whereas
T2 images are typically used when looking for areas of in�ammation [12, 13]. This
thesis focuses on the analysis of MR-T1 images of the brain for anomaly detection.

1.2 ����� �����������

The brain hemispheres can be distinguished visually by the longitudinal �ssure
(Fig. 2.3) — a membrane between both hemispheres �lled with cerebrospinal �uid
(CSF). Although they are, at a coarse scale, almost symmetrical in structure, subtle
(�ner-scale) anatomical di�erences between them exist [1, 14, 15]. These di�er-

2 A CT image takes 10 minutes on average depending on the body part being examined whereas an MR
image takes between 45 minutes to 1 hour.
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(a) X-ray image

(b) Computer Tomography (CT) image

T1

T2

(c) Magnetic Resonance Imaging (MRI)

Figure 1.1: Brain images from di�erent modalities. (a) X-ray image. (b) Axial, sagittal, and
coronal slices of a CT brain volumetric image. (c) Axial, sagittal, and coronal
slices of MR T1 and T2 brain volumetric images of the same subject. CT and MR
images provide superior soft-tissue contrast and anatomic detail compared to X-
ray images. Water-rich structures are dark in T1 and very bright in T2, whereas
structures containing fat are considerably brighter in T1 than T2.
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ences are called hemispheric asymmetries or simply brain asymmetries and can be
de�ned at functional and structural levels [16].

Functional di�erences between the hemispheres — so-called hemispheric lat-
eralization — have been observed for several cognitive functions [17]. Both hemi-
spheres are indeed specialized for separate tasks. The left hemisphere is more
dominant for handedness and language than the right one. For instance, most
humans are right-handed3, whose motor coordination is performed by the left
hemisphere [17, 18]. Conversely, the right hemisphere is dominant, for example,
for visuospatial processing, face recognition, music, and visual imagery [19, 20].

The realization of the functional di�erences between the brain hemispheres
raises questions regarding the structural correlation of such lateralization [21].
Structural di�erences include changes in volume, shape, and size of (sub)cortical
structures (e.g., sulci, cerebral lobes, and hippocampus) as well as a di�erent
amount of white and gray matter in the hemispheres [21, 22]. This thesis only
focus on the analysis of structural di�erences.

Deviations from the normal pattern of brain asymmetries are useful insights
about neurological pathologies [23]. Studies have shown that some neurological
diseases — such as Alzheimer’s [24], schizophrenia [25, 26], epilepsy [27–29], and
autism [30] — are indeed associated to abnormal brain asymmetries. Morpholog-
ical changes in (sub)cortical in one or both hemispheres characterize these struc-
tural abnormalities, as illustrated in Fig. 1.2. Therefore, it becomes crucial to de�ne
normal brain asymmetries for the identi�cation and detection of many abnormali-
ties in the brain. We widely explore lesions associated with abnormal asymmetries
throughout this thesis.

1.3 �������� �� ����� ���������

Quantitative analysis of MR brain images has been used extensively for the char-
acterization of brain disorders, such as stroke, tumors, and multiple sclerosis. Such
methods rely on delineating objects of interest — (sub)cortical structures or lesions
— trying to solve detection and segmentation simultaneously. Results are usually
used for tasks such as quantitative lesion assessment (e.g., volume), surgical plan-
ning, and overall anatomic understanding [6, 31, 32]. Note that segmentation corre-
sponds to the exact delineation of the object of interest, whereas detection consists
of �nding the rough location of such objects (e.g., by a bounding box around the
object), in case they are present in the image.

The simplest strategy to detect brain anomalies consists of a visual slice-by-slice
inspection by one or multiple specialists. This process is very time-consuming,
error-prone, and even impracticable when a large amount of data needs to be pro-
cessed.

The analysis of brain asymmetries commonly follows a similar strategy. First,
the approach interactively segments structures of interest in the image, such as

3 Approximately 90% of the world population are right-handed [17, 18].
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(a) (b)

Figure 1.2: MR images and their corresponding asymmetry maps for (a) a healthy subject
and (b) a stroke patient. Green borders indicate examples of pairs of regions with
normal asymmetries, whereas red borders indicate abnormal asymmetries re-
sulted from a stroke. The dashed yellow lines show mid-sagittal planes. Normal
asymmetries are accentuated on the brain cortex (regions close to the borders).
Both cases omit other regions with normal asymmetries.

hippocampi, amygdala, and putamen. Then, it computes morphometric measures
from the segmented structures (e.g., volume), and performs statistical analysis of
these measures [33]. However, this strategy is also problematic since the interac-
tive segmentation of brain structures may be very complicated, extremely suscep-
tible to errors, and that demands much time from the expert. Thus, segmentation
errors may severely impact the analysis.
Continuous e�orts have been made for automatic anomaly detection that delin-

eates anomalies with accuracy close to that of human experts. However, this goal
is very challenging and complex due to the large variability in shape, size, and
location present in di�erent anomalies, even when the same disease causes these
(see, e.g., Fig. 1.3). All these di�culties have motivated the research and develop-
ment of automatic brain anomaly detection methods based on machine learning
algorithms, as discussed next.

1.3.1 Machine Learning

Machine learning (ML) can aid experts in detecting and classifying lesions from a
brain image [35]. ML is based on algorithms that can learn from a dataset without
being explicitly programmed to perform a task [36]. Each example from the dataset
is called sample, and it is described by a set of features, called feature vector. For
medical image analysis, a sample can be de�ned, for example, as a voxel, the im-
age of a segmented object, or the shape attributes (descriptors) computed on this
object. Feature extraction algorithms, in turn, are chosen according to the targeted
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low medium high

lesion frequency distributed across the brain

Figure 1.3: The di�erent appearance of brain anomalies. Top: axial slices of three stroke
patients with lesions (gold-standard borders in pink) that signi�cantly di�er in
location, shape, and size. Bottom: slices of a 3D heatmap show the location fre-
quency of stroke lesions across the brain. Although caused by the same disease,
the lesions are sparsely distributed in the brain resulting in low-concentrated
regions. The 3D heatmap was built from aligned manual lesion segmentation
of stroke patients from the ATLAS dataset [34] after registration to a standard
template.

problem and sample type. Texture [6, 37–40], shape features [41–43], and, more
recently, deep-learning-based features [35, 44–46] are common feature examples
adopted in medical image analysis problems.

Overall, machine learning can be either supervised or unsupervised. In super-
vised learning, the dataset is labeled, i.e., each of its samples has an assigned class.4
For example, a dataset of MR brain images (samples) that is used in a classi�cation
task that aims to discriminate between normal and abnormal tissue will use two
classes: normal and abnormal. A classi�cation algorithm learns a decision model
from labeled samples of a given training set by associating features to classes [47].
More generally, when the algorithm predicts a continuous value rather than a cat-
egorical class value, one says that it learns a regression model. In our work, we
will mainly focus on decision models. New unseen samples are then classi�ed
according to the learned decision model. Fig. 1.4a shows a toy example of two
easy separable classes with a linear classi�er, i.e., a classi�er that assumes that the
boundary between samples of the two existing classes is linear. Typically, linear
classi�ers are not su�cient to predict the correct classes of more complex sam-

4 Some classi�cation problems might consider a sample with more than one label.
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ple distributions in real-world data, as shown by the example in Fig. 1.4b. In such
cases, nonlinear classi�ers are used to properly split the feature space into areas
corresponding to the two classes (Fig. 1.4c).
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Figure 1.4: Toy example displaying the relation between feature 1 and feature 2 and two
classes.5 (a) A linear classi�er that can separate the given samples. (b) A linear
classi�er unable to separate other given samples. (c) A nonlinear classi�er that
separates the samples of (b).

Unsupervised machine learning algorithms aim at �nding intrinsic structures
in an unlabeled/uncategorized dataset [48]. The key added value of unsupervised
methods as compared to supervised ones is that one does not need an expert to
have created an annotated (labeled) training set. This is particularly essential in sit-
uations where labeling is expensive and requires specialist expertise, such as in the
case of medical imaging datasets to be manually labeled by delineation by trained
medical professionals. A potential drawback of unsupervised learning is that the
structures extracted from an (image) dataset may not always be relevant to the
expert [48]. Clustering is arguably the best known unsupervised strategy. It �nds
patterns in the feature space and uses these to divide the dataset into groups that
exhibit high internal coherence and low similarity with other groups. Figs. 1.5a–b
illustrate results produced by clustering for hypothetical data.
Outlier detection — also called anomaly detection — is another common prob-

lem in unsupervised machine learning.6 Techniques aim to detect outliers in an
unlabeled dataset under the assumption that the majority of its samples are nor-
mal [49]. An outlier is a sample that di�ers signi�cantly from the remainder of
the dataset. Some authors also refer to outliers as anomalies, exceptions, noise,
and novelties. Several applications use outlier detection, such as bank fraud detec-
tion, loan application processing, and medical condition monitoring [49]. Fig. 1.5c
shows an example of outlier detection.

5 Figure inspired by the Ph.D. thesis of Jansen (2019) [36].
6 Some authors consider the term supervised anomaly detection when the training set has only two
classes: normal and outlier [49]. A binary classi�er is then trained for outlier detection.
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Figure 1.5: (a) A hypothetical unlabeled dataset. (b) Resulting groups after performing a
given clustering algorithm. Each color represents a di�erent group. (c) Example
of outlier detection. If an unseen test sample is far from the training set of normal
samples (the yellow region with dashed borders), it is classi�ed as an outlier.

Medical image analysis commonly uses outlier detection mainly for detecting
anomalies (lesions). One-class classi�cation (OCC) — also called unary classi�ca-
tion — is a class of techniques commonly used for this purpose [40, 50–53]. Con-
sider a training dataset with onlymedical images of healthy subjects — also known
as control images. All training samples have the same single class: healthy. The
OCC learns a classi�cation boundary for the healthy class to classify new unseen
images as healthy or outlier. Detected outliers are considered as anomalies, e.g.,
tumors, stroke, and cancer. OCC is di�erent from and more challenging than the
traditional classi�cation problem, which tries to di�erentiate two or more classes
from a labeled training set. In this thesis, we focus on unsupervised algorithms in
particular one-class classi�cation.

1.3.2 Automatic Brain Anomaly Detection

Most automatic methods in the literature rely on supervised machine learning to
detect or segment brain anomalies. They train a classi�er from training images —
which must be previously labeled (e.g., lesion segmentation masks) by experts —
to delineate anomalies by classifying voxels or regions of the target image. Tradi-
tional image features (e.g., edge detectors and texture features) and deep feature
representations (e.g., convolutional features) are commonly used [6, 37–39, 46, 54–
56].

However, these supervised methods commonly have three main limitations.
First, they require a large number of high-quality annotated training images,
which is absent for most medical image analysis problems [11, 35, 57]. Second,
they are only designed for the lesions found in the training set. Third, some meth-
ods still require weight �ne-tuning (retraining) when used for a new set of images
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due to image variability across scanners and acquisition protocols, limiting its ap-
plication into clinical routine.
All the above limitations of supervised methods motivate research on unsuper-

vised anomaly detection approaches [13, 40, 53, 58, 59]. From a training set with
images of healthy subjects only, these methods perform an outlier detection tech-
nique to identify anomalies in new images. Some of these methods can detect
enormous lesions [58, 59], but show poor results with small lesions, which are the
most challenging cases.

1.4 ������ �������� ��� ��������

As unsupervised brain anomaly detection methods do not use labeled samples,
they are less e�ective in detecting lesions from a speci�c disease when compared
to supervised approaches trained from labeled samples for the same disease. For
the same reason, however, unsupervised methods are generic in detecting any
lesions, e.g., coming from multiple diseases, as long as these notably di�er from
healthy training samples.
Combining the pros and cons of unsupervised methods listed above, as well

as the importance of identifying abnormal brain asymmetries associated to brain
anomalies, we can now state the key research questions of this thesis:

RQ1: Can we model normal brain asymmetries?

RQ2: Can we use the normal brain asymmetry model to detect brain anomalies?

To illustrate how we approach answering these questions, let us consider the
typical pipeline for brain image processing and analysis (Fig. 1.6). Given a 3D MR-
T1 image, we �rst perform several preprocessing tasks (e.g., noise �ltering and
intensity normalization) to overcome inherent acquisition issues, such as noise
and inhomogeneity �eld. Next, we de�ne the volumes of interest (VOI) to be an-
alyzed: either the entire brain or some speci�c region. Features related to brain
asymmetries are extracted from these VOIs and subsequently classi�ed as normal
or abnormal from the knowledge about normal asymmetries present in a train-
ing set of control images. We evaluate our approaches on MR-T1 images, mainly
due to the greater availability of public datasets of healthy and abnormal brain
volumetric images for this imaging modality. Public datasets of di�erent imaging
modalities exist. However, some only provide a subset of 2D slices for each image
or interpolate slices to build a volume.
The structure of this thesis follows the considered steps of the pipeline in Fig. 1.6

in a bottom-up approach — starting with simpler, more speci�c problems, towards
the more complex and general ones, as follows.
Chapter 2 presents background information on concepts explored in this work,

such as brain anatomy concepts, imaging physics, and typical MRI preprocessing
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Figure 1.6: General pipeline considered in this thesis to explore novel unsupervised brain
anomaly detection approaches.

operations. Finally, the chapter also introduces the Image Forest Transform frame-
work [60], as well as two algorithms derived from it, which serves as a basis for
the design of some image operators used by the proposed solutions of this thesis.

Chapter 3 presents our solution for brain image segmentation. Its goal is to de-
�ne our target macro-regions of interest — i.e., right and left hemispheres, cerebel-
lum, and brainstem— to improve the preprocessing, restrict the analysis, and com-
pute hemispheric asymmetries in some cases. We start by exploring lesions associ-
ated with abnormal hemispheric asymmetries as detailed next in Chapters 4 and 5,
as follows.

Chapter 4 proposes an automatic method for the detection of abnormal hip-
pocampi from abnormal asymmetries. Our solution uses deep generative networks
and a one-class classi�er to model normal hippocampal asymmetries from healthy
subjects and detect abnormal hippocampi. This is the �rst example of the usage of
one-class classi�ers for addressing the research questions of the thesis.

Chapter 5 presents a more generic solution that re�nes the proposal in Chap-
ter 4 to detect abnormal asymmetries in the entire brain hemispheres. Our ap-
proach extracts pairs of symmetric regions — called supervoxels — in both hemi-
spheres of a test image under study. One-class classi�ers then analyze the asym-
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metries present in each pair. This method is limited to detect asymmetric lesions
only in the hemispheres.
In Chapter 6, we extend the previous solution from Chapter 5 to detect lesions

(symmetric or asymmetric) in the hemispheres, cerebellum, and brainstem. This
new approach replaces asymmetries with any other saliency map that emphasizes
brain anomalies. As proof of concept, we instantiated this solution with image
registration errors to detect anomalies.
Finally, Chapter 7 presents a compilation of our contributions and experimen-

tal �ndings, along with future research perspectives.
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2BACKGROUND

This chapter provides an overview of the basic concepts and techniques used in the
next chapters. The chapter is targeted to a non-expert audience since it presents
many basic and well-established topics on medical image analysis. Also, as the
coming chapters detail the related work regarding their proposed methods, expe-
rienced readers are encouraged to skip this one and refer back whenever needed.
In Section 2.1, we detail basic concepts about brain anatomy. Section 2.2 pro-

vides an overview of medical imaging physics as well as which standards we
adopted in this thesis. Section 2.3 details the main preprocessing techniques used
in MR image analysis.
Section 2.4 introduces Image Foresting Transform (IFT) [60], a powerful

methodology for the design of image operators based on optimum connectiv-
ity. IFT serves as the basis for the development of several algorithms used
by the proposed solutions of this thesis, such as object delineation (Sec-
tion 3.2.2), one-class classi�cation (Section 4.2.4), and supervoxel segmentation
(Sections 5.2.3 and 6.1.3). For better understanding the fundamentals of such al-
gorithms, Section 2.5 presents a clustering method derived from IFT, whereas
Section 2.6 details the Iterative Spanning Forest [61], a framework for superpixel
segmentation also based on IFT. Section 2.7 presents concluding remarks.
Appendices provide supplementary information to the main thesis as follows.

Appendix A presents a quick reference about notations and de�nitions of terms
used in this thesis.
To answer our research questions, we need datasets with isotropic 3D MR-T1

brain images from (i) healthy subjects, and (ii) with asymmetric anomalies of dif-
ferent sizes (especially small ones) and their gold-standard segmentation masks.
As such, Appendix B presents a full description of all datasets used in the next
chapters.
Finally, Appendix C describes all quantitative metrics adopted in this thesis to

measure the accuracy and quality of our proposed solutions.

2.1 ����� ���������� ��������

This section summarizes the main concepts related to brain anatomy. For a com-
plete reference of the former, we recommend the books of Tortora and Derrick-
son [1], and Saladin [3]. More details about the latter can be found in the works of
Hugdahl and Westerhausen [21], and Ocklenburg and Güntürkün [16].
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2.1.1 Brain Anatomy

The nervous system is one of the most complex parts of the human body, yet its
weight is equivalent to only 3% of the total bodyweight on average [1]. It is formed
by a collection of specialized nerves and cells (neurons) that transmit signals to and
from di�erent parts of the body [1–3]. It acts as a communication network of the
body that captures and interprets environmental stimuli, elaborating responses
which may be converted, for example, in movements, sensations, and �ndings.

Structurally, the nervous system is organized in two main subdivisions: the cen-
tral nervous system (CNS) and the peripheral nervous system (PNS), as shown in
Fig. 2.1. The CNS consists of the brain and spinal cord. It processes di�erent kinds
of incoming sensory information, being responsible for all cognitive and a�ective
capacities of humans. PNS, in turn, contains all the nerves that lie outside the CNS.
Its leading role is to connect CNS to the organs, limbs, and skin so that CNS can
receive and send information to these areas of the body [1, 2].

Brain

Spinal Cord

Ganglia

Nerves

Peripheral Nervous
System

Central Nervous System

Figure 2.1: A simple diagram of the nervous system.

The brain is the interpreter of internal and external stimuli, containing about
85 billion neurons in an adult human [1]. Analogously, it is like the central pro-
cessing unit (CPU) of a computer: it �rst receives and interprets di�erent input
information from our senses and internal organs and then provides appropriated
responses. Thus, the brain provides control over body movement and regulates
the operation of internal organs [1, 2, 14].
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The spinal cord, in turn, is a long and fragile tube-like structure that is connected
to the brain and extends down to the bottom of the spine. With about 100 million
neurons, it is like a highway that carries incoming and outgoingmessages between
the brain and the rest of the body.
The brain consists of the cerebrum, cerebellum, and brainstem (Fig. 2.2). The

cerebrum is the largest and uppermost portion of the brain. It contains two anatom-
ically symmetrical hemisphereswith several subcortical structures (e.g., hippocam-
pus) [1]. The hemispheres are connected by a white matter structure called the
corpus callosum. The cerebrum has an irregular appearance primarily due to gyri
(elevations or ridges) and sulci (grooves or depressions).

Frontal Lobe
cognitive functions,
memory, movement

Temporal Lobe
hearing, memory

Parietal Lobe
language, touch

Occipital Lobe
vision

Cerebellum
balance and coordination

Brainstem
breathing,
heart rate, temperature

(a)

Frontal lobe Parietal lobe Temporal lobe Occipital lobe

Cerebellum Brainstem Sylvian fissure

(b)

Figure 2.2: (a) Brain regions and some of their corresponding responsibilities.1 The four
lobes from the hemispheres form the cerebrum. (b) Di�erent axial slices of an
MR-T1 image with the brain regions.2

The brain hemispheres consist of an inner core of nerve �bers called white mat-
ter and an outer cortex of gray matter. Each hemisphere can be divided into four
lobes, as presented in Fig. 2.2. The frontal lobe is responsible for cognitive functions
and the control of voluntary movements [14]. The temporal lobe is the location of

1 Figure adapted from http://picassowrites.blogspot.com/2019/03/
any-exercise-great-for-aging-brain.html.

2 Figure adapted from https://commons.wikimedia.org/wiki/File:Brain_regions_on_T1_MRI.
png.
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the primary auditory cortex. It is the region where the sound is processed and
where language and speech comprehension systems are located [62]. It is also in-
volved with memory and emotion associations [63]. A deep lateral �ssure called
Sylvian �ssure separates the temporal lobe from the parietal and frontal lobes (see
the purple region in Fig. 2.2b). The parietal lobe is associated with linguistic and
visuospatial functions. It helps to process the sense of touch and pain [14]. Finally,
the occipital lobe is responsible for vision since the primary visual cortex is located
within it.

The cerebellum is the second largest structure of the brain, located behind the
temporal and occipital lobes [1]. It has an irregular and highly folded surface sim-
ilar to the cerebrum. It plays a signi�cant role in movement and acts in cognition
and language processing [14]. Lastly, the brainstem connects the brain to the spinal
cord and the rest of the body [14]. It receives and controls certain functions related
to attention, temperature, heart rate, and breathing.

In this thesis, we focus on detecting lesions in structures inside the brain hemi-
spheres, cerebellum, and brainstem. Chapter 3 details our approach for brain image
segmentation.

2.1.2 Anatomical Planes of Body

To understand and describe the spatial organization of the body, we de�ne posi-
tions and directions relative to standard anatomical planes and axes [64]. These
planes are hypothetical geometric planes that divide the human body into sec-
tions. In human and animal anatomy, the body (or an organ) is sliced up using
three planes: axial, coronal, and sagittal. In medical image analysis, a slice is a 2D
image extracted from a 3D image along with one of these planes. Fig. 2.3 shows
these planes for a brain.

For the sake of simplicity, suppose an upright subject. An axial plane divides the
body into superior (upper) and inferior (lower) portions [1]. Such a plane is parallel
to the �oor and perpendicular to the long axis of the body. Slices are extracted from
the feet to the head.When slicing the brain in this direction, we can see the left and
right hemispheres (Fig. 2.3). This plane is also known as transverse or horizontal
plane.

A coronal plane (also called frontal plane) divides the body into anterior (front)
and posterior (back) portions [1]. Slices are extracted from the back to the front of
the body. A coronal slice will show both brain hemispheres, like the axial slice.

Finally, a sagittal plane is a vertical plane that divides the body into right and
left sides [1]. Indeed, slices are extracted from the right to the left side of the body.
Themid-sagittal plane (MSP) is a plane that passes through the center of the body
dividing it into approximately two symmetric parts [65] — see the coronal and
axial MR slices in Fig. 2.3. Most structures on one side have a corresponding coun-
terpart on the other side with similar shapes and relative locations [66]. Several
applications, such as brain image registration [65, 67, 68] and, more importantly,
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Sagittal plane

Coronal plane

Axial plane
Superior

Anterior

Posterior

Right

Left

Inferior

Figure 2.3: Anatomical planes of the brain.3 The dashed red line on the coronal and axial
MR slice show their mid-sagittal planes.

brain asymmetry analysis [65, 66, 69] uses MSP. Likewise, some of our proposed
methods will extensively use MSP as well. Section 2.3.2 provides a summary of
automatic MSP extraction methods.

2.2 ����� ������� �������

In this section, we present the main concepts of imaging physics and the standards
used in this thesis. For a complete reference, we refer to the works of Runge et
al. [10], Toennies [8], Larobina and Murino [70], and Brett et al. [71].

2.2.1 Medical Image Resolution

A medical image is a representation of some internal anatomical structures, or
their functions, in the form of an array of picture elements called pixels for 2D and
voxels for 3D. A 3D image typically consists of a series of 2D images representing
thin slices that form a volume (Section 1.1).4 It results from a sampling/reconstruc-
tion process that maps numerical values to voxels [8, 70]. For the sake of simplicity,
let the term image be a 3D image and slice be a 2D image henceforth.

3 Figure adapted from https://www.wikiwand.com/en/Sagittal_plane.
4 It could also be a set of projections of an organ onto an image plane. Multiple acquisitions of the same
volumetric image over time form a 4D medical image.
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The smallest element of a slice is a pixel. It is de�ned by one or more values (also
called intensities) and a position (2D coordinates; width and height) on the image
domain [10]. It has dimensions along two axes inmm (e.g., a pixel size of 1⇥1mm2).
A voxel, in turn, is the volume element of an image. Its dimensions are given by
the pixel and the thickness of the slice — i.e., the spacing/distance between two
slices — which is measured along the third axis [10]. An image is isotropic when
all its voxel dimensions are equal (e.g., a voxel size of 1 ⇥ 1 ⇥ 1 mm3).

Voxel size is strongly related to spatial image resolution, which is an essential
component of image quality. Spatial image resolution refers to the number of voxels
in an image, or equivalently the number of pixels in a slice. The higher the number
of voxels, the greater the resolution, and, consequently, the more detailed it is the
image. Together with image contrast, spatial resolution determines the expert’s
ability to distinguish one structure from others [72].

Altering voxel size impacts the spatial image resolution directly, as demon-
strated in Fig. 2.4 that shows the same axial slice of an MR-T1 image from the
same subject but acquired with di�erent spatial resolution. For example, suppose
an MRI scanner acquired a brain image by using a voxel size of 2⇥ 2⇥ 2mm3 and
a given protocol. The resulting spatial resolution obtained was 128 ⇥ 128 ⇥ 128
voxels. By appearance alone, the image is pixelated, grainy, and has jagged edges
that make its analysis harder (Fig. 2.4a). In contrast, the same image was acquired
with a smaller voxel size of 1 ⇥ 1 ⇥ 1 mm3 in order to improve its quality. All
other scanner parameters were the same. By halving the voxel size, the resulting
image resolution doubled: 256 ⇥ 256 ⇥ 256. Consequently, the image is sharper
with improved anatomic details that considerably leverage its analysis (Fig. 2.4b).
To achieve this higher quality, however, the imaging time approximately doubled.

A common practice in clinical routine to avoid long imaging times in MRI is
to guarantee high-resolution for slices of a given direction (e.g., 1 ⇥ 1 mm2) but
increase their thickness (e.g., 5mm) [10]. The resulting number of slices can be con-
siderably less depending on the chosen thickness. Such a practice results in two
shortcomings: (i) small structures or lesions can be partially or even totally lost;
and (ii) morphological measurements (e.g., volume) cannot be precisely computed.
One might still interpolate slices to build a volume — as performed, for example,
for the brain images from the popular BraTS dataset [73]. Nevertheless, this can
create artifacts or textures that do not exist in the original image, impairing anal-
ysis. In this thesis, we only consider isotropic brain images for the development
and evaluation of our methods. Appendix B details the considered brain image
datasets.

2.2.2 Magnetic Field Strength

Field strength refers to the magnetic �eld strength used in the MRI scanner during
image acquisition. Field strength is measured in teslas (T) and correlates image-
quality factors [74], such as spatial-image resolution and artifacts. In general, a
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(a) 2 ⇥ 2 ⇥ 2 mm3. (b) 1 ⇥ 1 ⇥ 1 mm3.

Figure 2.4: Comparison between the same axial slice of anMR-T1 brain imagewith di�erent
spatial resolution. (a) Lower resolution: voxel size of 2 ⇥ 2 ⇥ 2 mm3. (b) Higher
resolution: voxel size of 1 ⇥ 1 ⇥ 1 mm3. Highlighted regions indicate a lesion.
The low-resolution slice is pixelated, grainy, and has jagged edges, whereas the
high-resolution slice is sharper with improved anatomic details.

stronger �eld strength produces less noisy images with higher spatial resolu-
tion. Consequently, small and complex structures (e.g., hippocampus) are sharper,
which makes their analysis more precise. However, some artifacts, like �eld inho-
mogeneity (Section 2.3.3), are more intense in high �eld strength.
Fig. 2.5 shows axial slices of MR-T1 brain images of 2T and 3T from di�erent

patients. Note that 2T images are noisier than 3T images, whereas �eld inhomo-
geneity is higher in 3T than 2T images. Brain structures are also sharper in 3T.

(a) 2T. (b) 3T.

Figure 2.5: Comparison between axial slices from MR-T1 brain images of (a) 2T and (b) 3T.

In this thesis, we consider 3D MR-T1 brain images of 3T for the development
and evaluation of most of the proposed methods. We only consider images of 2T
during the evaluation of the automatic brain segmentation methods (Chapter 3).
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2.2.3 Medical Image Orientation

MRI scanners can acquire thin slices at any angle or orientation within the
body [10]. It is crucial to know the chosen orientation and coordinate system to
interpret the voxels’ positions in the image correctly. Although there is no single
convention, some common concepts and terminologies are used to this end by pop-
ular medical image libraries [71, 75] and visualization tools [76, 77], as described
below.

There are three conventional coordinate systems. The world coordinate system
is the Cartesian coordinate system in which the subject is positioned. The anatom-
ical space consists of the three planes that describe the standard anatomical posi-
tion of a human (Section 2.1.2). The image coordinate system details how a medical
image was acquired concerning the subject’s anatomy and de�nes the voxels’ co-
ordinates. The conversion between the world and image coordinate systems com-
monly involves an a�ne transformation between both spaces.5

Suppose a subject is lying for a brain scan with his/her face up (Fig. 2.6). In this
thesis, we consider that the world and image coordinate systems follow the LPS+
orientation, that means:

• x-axis: from subject’s right to Left;
• y-axis: from subject’s anterior to Posterior; and
• z-axis: from subject’s inferior to Superior.

Anterior

Left

Right

Inferior

Superior

Posterior origin
(0,0,0)

Y

Z

X

LPS+ Orientation

Figure 2.6: Coordinate system with the LPS+ orientation.

LPS+ is the usual convention for radiological visualization. The direction of the
axes are given relative to the subject (e.g., “left” refers to the subject’s left). Each
letter of the orientation reference is an abbreviation for the subject’s direction. The
+ symbol is a convention that de�nes which is the increasing direction along the

5 For more details, we refer to the manual of the NiBabel library [71] at https://nipy.org/nibabel/
coordinate_systems.html.
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corresponding axis. The considered origin for the image coordinate system — i.e.,
the position of the voxel (0,0,0) — is the upper-left corner toward the subject’s feet
(Fig. 2.6).

Regardless of how medical images are stored on disk, all images processed to-
gether must share the same coordinate system. Some medical image �le formats,6
such as DICOM and Nifti, store the direction information that describes how the
voxel data should be interpreted [10]. Consequently, one can reorient the images
to be analyzed together to follow the same orientation. We reoriented all images
used in this thesis to LPS+.

2.3 ��� �������������

Automatic analysis of MR images is challenging due to typical acquisition arti-
facts — e.g., noise, inhomogeneities, and variability of intensity and contrast —
which negatively impact both medical diagnosis and automatic analysis. MRI pre-
processing steps, in turn, aim to reduce these artifacts and, consequently, improve
the image quality for subsequent analysis (Fig. 1.6).
In this section, we describe typical preprocessing steps applied to raw MR im-

ages [11, 40, 51, 78, 78–82] with a focus on the techniques used throughout this
thesis. The combination of these steps is problem dependent and empirically esti-
mated [82]. Fig. 2.7 presents the combination used in the next chapters. For a more
detailed reference on MRI preprocessing, we refer to the book of Martí-Bonmatí
and Alberich-Bayarri [81].

2.3.1 Noise Reduction

Even though signi�cant improvements in imaging technology have been made in
the past years, MR images are still prone to noise during acquisition [82–85]. Noise
directly a�ects the accuracy of many automatic methods, such as segmentation,
classi�cation, and registration [83].
One strategy for noise reduction, also called denoising, consists of acquiring re-

dundant images and averaging the outputs directly in the scanner. However, this
option is uncommon in clinical routine since it increases the acquisition time sig-
ni�cantly, which impacts the patient’s comfort [83, 85]. Instead, �ltering methods
are the preferable alternatives in preprocessing pipelines [78, 82, 85].
Traditional denoising methods rely on low-pass �lters to attenuate high-

frequency signals in the image [83, 86]. One popular example is median �ltering,
which is e�ective at removing salt-and-pepper noise while preserving edges [87].
The �ltered image is obtained by replacing each voxel with the median of all
its neighboring voxels de�ned by an adjacency relation (e.g., 26-neighborhood).
Fig. 2.8 shows a noisy brain image and its �ltered result by median �ltering.

6 For a complete reference of medical image �le formats, we refer to the work of Larobina and
Murino [70].
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Figure 2.7: General preprocessing steps for MR brain images. Native and Standard Image
Space refer to, respectively, the coordinate space of the image being prepro-
cessed and a given template.

(a) Noisy axial slice. (b) Filtered axial slice.

Figure 2.8: (a) An axial slice of a noisy MR-T1 brain image and (b) its �ltered result by
median �ltering.
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Although median �ltering is less e�ective for high levels of noise than modern
and more complex denoising methods [88–90], it is suitable for the majority of
the images used throughout this thesis. For simplicity, we do not consider the few
extremely noisy images present in the datasets for the development and evaluation
of our methods.

2.3.2 MSP Estimation

MRI scanners may produce tilted and misaligned brain images during acquisition
due to factors as technicians’ inexperience, immobility of patients, and imprecise
scanner calibration [65]. Tilt and misalignment may mislead visual inspection and
a�ect the analysis of brain asymmetries since axial and coronal slices are no longer
representing homologous structures [91].
Correcting the tilt of the head involves realigning themid-sagittal plane (MSP) of

the brain (Section 2.1.2) with the center of the image. A typical automatic approach
for MSP estimation returns the plane that maximizes a given similarity measure
between the two brain hemispheres [65, 66, 92, 93].
Ruppert et al. [66] propose a fast and accurate method that maximizes the sym-

metry between edges of the hemispheres in amultiscale-optimization scheme. The
method starts by enhancing edges with the Sobel operator (Figs. 2.9a–b) followed
by a thresholding step that selects the brightest edge voxels (Fig. 2.9c). Themethod
then evaluates how symmetric the selected edges are with respect to each can-
didate plane. This measure is used to steer the position and orientation of the
candidate MSP. This process is performed in a multiscale-optimization search to
evaluate a high number of planes in interactive time. Each stage works on a di�er-
ent image scale, re�ning the solution of the previous stage. Fig. 2.9 presents some
steps of this algorithm.

(a) (b) (c) (d)

Figure 2.9: Steps for MSP de�nition by Ruppert et al. [66]. (a) An axial slice of a tilted MR-T1
brain image. (b) Enhanced edges by the Sobel operator. (c) Binary mask with the
selected edge voxels for symmetry computation. (d) Resulting aligned image by
its MSP (central white line).
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We use the method of Ruppert et al. [66] to estimate the MSPs of the brain im-
ages considered in this thesis. We use MSPs to realign images before registration,
and as a step to compute brain asymmetries for anomaly detection, as further de-
tailed in Chapter 5.

2.3.3 Bias Field Correction

MR images are typically a�ected by intensity inhomogeneities, so-called bias �eld,
which results from imperfections in the radio-frequency coils during image acqui-
sition (Figs. 2.10a–b). This phenomenon makes the intensities of the same tissue
vary in di�erent locations within the image [94, 95] — e.g., the intensity range of
the white matter in one hemisphere is considerably di�erent from the other hemi-
sphere — or, more generally, there is a spatially-varying bias over the extent of the
scanned brain. For instance, Fig. 2.10a shows such a case where the central brain
area is overall brighter than the areas close to the cortex.

(a) Corrupted image. (b) Estimated bias �eld. (c) Corrected image.

Figure 2.10: Example of bias �eld correction.

Most automatic analysis methods, such as segmentation and registration, as-
sume that a given tissue presents similar voxel intensities throughout the im-
age [95]. Thus, correcting inhomogeneities is crucial and must be performed be-
fore any quantitative MR analysis [94]. Fig. 2.10 presents an example of bias �eld
correction.

Several methods have been proposed for bias �eld correction, typically for the
analysis of MR brain images [96–99].7 Many approaches assume a priori knowl-
edge about the image characteristics, such as the number of tissues or location,
which make them limited to images from certain anatomical regions [100]. In con-
trast, the well-known and fully automatic N3 bias �eld correction [101] does not
require any prior information about the MR data. Consequently, N3 is �exible and
robust as it can accurately correct MR images of various anatomical structures
from healthy subjects and patients. N3 interactively estimates the bias �eld by

7 We refer to the work of Vovk et al. [94] for a complete reference on bias �eld correction methods.
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maximizing the high-frequency component of the image intensity distribution by
using B-spline �tting [82, 94].
An optimized variant of N3, so-called N4 [102], proposes a faster B-spline ap-

proximation in a modi�ed hierarchical optimization scheme. This variant is faster
than N3 with similar accuracies. N4 is widely used in the literature and publicly
available on the open-source ITK library [103]. We use N4 to correct intensity in-
homogeneities in all images considered in this thesis.

2.3.4 Image Registration

Image registration is the task of establishing a spatial correspondence between
images from the same context (e.g.,MR images of the brain) by mapping them into
the same coordinate system [104]. As such, the same anatomical structures present
in these images will share an identical location in all images after registration.
Typical MRI preprocessing pipelines use registration (i) to combine anatomical
information from di�erent imaging modalities — e.g., T1 and T2 images from the
same patient — or (ii) to locate the images in a speci�c standard space to perform
a population analysis [82].
The way image registration typically works is to deform an image, the moving

image (Fig. 2.11a), to align with another one, the �xed image (Fig. 2.11b), also called
template or reference image. A cost function — e.g., mutual information [105] (Ap-
pendix C.1) — assesses the quality of alignment, i.e., the similarity between the
deformed moving image and the �xed image [36]. This cost function is iteratively
optimized so that its best score results in the �nal registered image.8

(a) Moving image. (b) Fixed image. (c) A�ne. (d) Non-rigid.

Figure 2.11: Example of a�ne and non-rigid registrations. (a) Moving image. (b) Fixed im-
age. (c) Registered images by a�ne registration. (d) Registered images by non-
rigid registration.

8 We recommend the surveys of Litjens et al. [44], and Mani and Arivazhagan [106] for more details on
medical image registration methods.
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Image registration can rely on linear and non-linear transformations to deform a
moving image. Linear registration applies the same transformation to every voxel
in the moving image, whereas non-linear registration can apply a distinct trans-
formation — so-called deformation �elds — to di�erent voxels [82]. The simplest
example of the linear case is rigid registration that only uses rotations and transla-
tions [106].A�ne registration extends the degrees of freedom of the rigid approach
by also considering scaling and shearing transformations. Finally, non-rigid regis-
tration, also known as deformable registration, relies on non-linear operations to
align images where correspondences cannot be achieved without localized defor-
mations. The choice of the registration approach is problem-dependent and usu-
ally considers constraints as alignment accuracy and processing time. Fig. 2.11
exempli�es the di�erent types of image registration.

In this thesis, we consider a�ne and, most importantly, non-rigid registration
for the development of the proposed image analysis methods. We use Elastix [107]
— an open-source software widely used in the literature — to perform all regis-
trations. Lastly, we consider the popular ICBM 2009c Non-linear Symmetric tem-
plate [108] for our methods.

2.3.5 Skull Stripping

Most automatic MR brain image applications aim to analyze patterns in only brain
tissues, i.e., the ones in the hemispheres, cerebellum, and brainstem. In contrast,
the inclusion of non-brain tissues (e.g., skull, eyes, and neck) during analysismakes
the processing time considerably slower, especially for 3D images. Besides, it can
impair the resulting accuracies since these tissues have similar intensities to brain
ones [109]. To circumvent these problems, most preprocessing pipelines rely on
skull-stripping methods to extract the brain for subsequent analysis. The result
can be either a new image with only brain voxels or a binary mask, which de�nes
label 1 for brain voxels and label 0 for the remaining tissues [110].

A large number of methods proposed over the past years con�rms the impor-
tance of skull-stripping [109–114]. However, these methods are not able to sepa-
rate the right and left hemispheres, cerebellum, and brainstem — so-called brain
segmentation — that allows a more speci�c analysis. For example, one can use seg-
mented hemispheres to assess brain asymmetries [18], or as the �rst step for the
segmentation of subcortical structures (e.g., hippocampus) [80], or to comparemor-
phological measures between the hemispheres [80]. Brain segmentation is more
challenging than skull-stripping as the boundaries between the objects of interest
are not well-de�ned onMR images, especially those between the hemispheres and
cerebellum [41].

In this thesis, we propose a novel probabilistic-atlas-based method for the auto-
matic segmentation of (ab)normal MR-T1 brain images (Chapter 3). Our method,
named AdaPro, provides a labeled image (segmentation mask) that assigns a di�er-
ent label for each object of interest — i.e., the right hemisphere, left hemisphere,
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cerebellum, and brainstem. Di�erent prior steps of the proposed anomaly detec-
tion methods use this segmentation mask: (i) for intensity normalization (Sec-
tion 2.3.6); (ii) to warp both hemispheres for abnormal asymmetry detection on
the native image space (Section 5.5); and (iii) to perform anomaly detection in each
object of interest individually (Chapter 6). Chapter 3 provides a detailed review of
brain image segmentation and presents AdaPro.

2.3.6 Intensity Normalization

In contrast with other medical imaging modalities, MR images even acquired with
the same protocol and scanner typically do not share similar intensities [82]. This
inter-image variability is problematic for automatic quantitative analysis because
most methods expect that the intensity distribution of all considered images is
the same. The previous methods for bias-�eld correction (Section 2.3.3) do not
solve this problem, since they focus on correcting intra-image variability, i.e., the
unbalanced distribution of intensities, e.g., from a given tissue across the image.
Intensity-normalizationmethods aim to correct the scanner-dependent variation

by mapping intensities of all images into a standard reference [11]. Most tradi-
tional approaches rely on the use of the histogram-matching technique, which
transforms the histogram from a source image to match a reference image’s
histogram [82, 115]. Recent methods incorporate a priori anatomical informa-
tion by restricting the histogram matching to only some segmented brain tis-
sues [11, 42, 109]. Consequently, non-brain tissues does not in�uence the quality
of the �nal intensity normalization.
Inspired by the anatomical-based methods, we propose a novel intensity-

normalization approach, as follows. Assume a source brain image I , a reference
image R, and their corresponding brain segmentation masks after skull stripping
(Section 2.3.5). First, we apply a linear intensity normalization into I by mapping
all its intensities within [0, 4095] (12-bits). We chose this intensity range since all
priority (in-house) datasets were acquired within it. Finally, we apply a histogram
matching between I and R by only considering the object brain voxels de�ned in
their segmentation masks. We use our proposed automatic segmentation method,
AdaPro, to obtain the brain segmentation masks from the source images (Chap-
ter 3). Fig. 2.12 illustrates the proposed intensity-normalization approach.

2.4 ����� ��������� ���������

The Image Foresting Transform (IFT) is a methodology for the design of image
operators based on optimum connectivity [60]. For a given connectivity function
and a graph derived from an image, the IFT algorithm minimizes (maximizes) a
connectivity map to partition the graph into an optimum-path forest rooted at the
minima (maxima) of the resulting connectivity map. The image operation resumes
to a post-processing of the forest attributes, such as the root labels, optimum paths,
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(a) Source image. (b) Reference image. (c) Normalized source
image.

Figure 2.12: The proposed intensity normalization. (a) Segmented brain source image of a
stroke patient. (b) Segmented reference image. (c) Resulting preprocessed im-
age after intensity normalization.

and connectivity values. IFT has been successfully applied in di�erent domains,
such as image �ltering [116], image descriptor [117, 118], segmentation [41, 119–
123], superpixel segmentation [40, 61, 124], representation [125], (semi) supervised
classi�cation [126–128], and data clustering [129, 130].

In this thesis, we widely use IFT-based methods for brain image segmenta-
tion (Chapter 3), one-class classi�cation (Chapter 4), and supervoxel segmentation
(Chapters 5–6). This section presents preliminary concepts and introduces the IFT
algorithm.

2.4.1 Preliminary Concepts

ImageGraphs:A d-dimensionalmulti-band image is de�ned as the pair Î = (DI , ÆI ),
where DI ⇢ Zd is the image domain — i.e., a set of elements (pixels/voxels) in Zd

— and ÆI : DI ! Rc is a mapping function that assigns a vector of c real-valued
intensities ÆI (p)—one value for each band (channel) of the image — to each element
p 2 DI . For example, for 2D RGB-color images: d = 2, c = 3; for 3D grayscale
images (e.g.,MR images): d = 3, c = 1. We represent a segmentation of Î by a label
image L̂ = (DI , L), wherein the function L : DI ! {0, 1, · · · ,M} maps every voxel
of Î to either the background (label 0) or one of theM objects of interest.

Most images, like the ones used in this thesis, typically represent their intensity
values by natural numbers instead of real numbers. More speci�cally, ÆI : DI !
[0, 2b � 1], where b is the number of bits (pixel/voxel depth) used to encode an
intensity value.

An image can be interpreted as a graphGI = (DI ,A), whose nodes are the voxels
and the arcs are de�ned by an adjacency relationA ⇢ DI ⇥ DI , withA(p) being the
adjacent set of a voxel p. A spherical adjacency relation of radius � � 1 is given by
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A� : {(p,q) 2 DI ⇥ DI , kq � pk  � }. (2.1)

The image operators considered in this thesis use two types of adjacency relations:
A1 (6-neighborhood) and Ap3 (26-neighborhood), as illustrated in Fig. 2.13.

p

(a) A1: 6-neighborhood.

p

(b) Ap3: 26-neighborhood.

Figure 2.13: Examples of adjacency relation for a given voxel p (red).

Paths: For a given image graph GI = (DI ,A), a path �q with terminus q is a
sequence of distinct nodes hp1,p2, · · ·pk i with hpi ,pi+1i 2 A, 1  i  k � 1, and
pk = q. The path �q = hqi is called trivial path. The concatenation of a path �p
and an arc hp,qi is denoted by �p · hp,qi.

Connectivity Function: A connectivity function (path-cost function) assigns a
value f (�q) to any path �q in the image graphGI = (DI ,A). A path � ⇤q ending at q
is optimum if f (� ⇤q)  f (�q) for every other path �q . In other words, a path ending
at q is optimum if no other path ending at q has lower cost.
Connectivity functions may be de�ned in di�erent ways. In some cases, they

do not guarantee the optimum cost mapping conditions [131], but, in turn, can
produce e�ective object delineation [132]. In this thesis, we explore the max-arc
path-cost function fmax , de�ned by

fmax (hqi) =
(

0 if q 2 S ,
+1 otherwise.

fmax (�p · hp,qi) = max{ fmax (�p ),w(p,q)}
(2.2)

where w(p,q) is the arc weight of hp,qi, usually estimated from Î , and S is the
labeled seed set.
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2.4.2 The General IFT Algorithm

For multi-object image segmentation, IFT requires a labeled seed set
S = S0 [ S1 [ · · · SM with seeds for object i in each set Si and background
seeds in S0 (Fig. 2.14a). The algorithm then promotes an optimum seed compe-
tition so that each seed in S conquers its most closely connected voxels in the
image domain. This competition considers a connectivity function f applied to
any path �q . In the case of a seeded watershed transform [133], as also adopted in
this thesis, arc weights correspond to gradient image values of Î (Fig. 2.14b).

!0

!1 !2R

(a)

!0

!1 !2

(b)

L

!0

!1 !2

(c)

Figure 2.14: Multi-object image segmentation by IFT. (a) Axial slice of a brain image with
seeds S0 for the background (orange), S1 for the right ventricle (red), and S2 for
the left ventricle (green). (b) Gradient image for (a) that de�nes the arc weights
for seed competition. Arcs have high weights on object boundaries. (c) Result-
ing segmentation mask for the given seeds and arc weights. Red and green
voxels represent object voxels, whereas the remaining ones are background.

De�ning �q as the set of all possible paths with terminus q in the image graph,
the IFT algorithm minimizes a path cost map

C(q) = min
8�q 2�q

{ f (�q)}, (2.3)

by partitioning the graph into an optimum-path forest P rooted at S . That is, the
algorithm assigns to q the path � ⇤q of minimum cost, such that each object i is
de�ned by the union between the seed voxels of Si and the voxels of DI that are
rooted in Si , i.e., conquered by such object seeds (Fig. 2.14c).

Algorithm 1 presents the general IFT approach. Lines 1–7 initialize maps, and
insert seeds into the priority queueQ . The state mapU indicates byU (q) =White
that the voxel q was never visited (never inserted into Q), by U (q) = Gra� that q
has been visited and is still in Q , and by U (q) = Black that q has been processed
(removed from Q).

The main loop (Lines 8–20) performs the propagation process. First, it removes
the voxel p that has minimum path cost in Q (Line 9). Ties are broken in Q using
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Algorithm 1: The General IFT Algorithm
Input: Image Î = (DI , I ), adjacency relation A connectivity function f ,

and seed set S ⇢ DI labeled by �.
Output: Optimum-path forest P , root map R, path-cost map C , and label

map L.
Aux :Priority queue Q , state mapU , and variable tmp.

1 foreach q 2 DI do
2 P(q) ú, R(q) q
3 C(q) f (hqi), L(q) 0
4 U (q) White
5 if q 2 S then
6 insert q into Q
7 L(q) �(q),U (q) Gra�

8 while Q , ú do
9 Remove p from Q such that C(p) is minimum

10 U (p) Black
11 foreach q 2 A(p) such thatU (q) , Black do
12 tmp  f (� ⇤p · hp,qi)
13 if tmp < C(q) then
14 P(q) p, R(q) R(p)
15 C(q) tmp, L(q) L(p)
16 if U (q) = Gra� then
17 update position of q in Q

18 else
19 insert q into Q
20 U (q) Gra�

21 return (P,R,C, L)

the �rst-in-�rst-out (FIFO) policy. The loop in Lines 11–20 then evaluates if a path
with terminus p extended to its adjacent q is cheaper than the current path with
terminus q and costC(q) (Line 13). If that is the case, p is assigned as the predeces-
sor of q, and the root of p is assigned to the root of q (Line 14), whereas the path
cost and the label of q are updated (Line 15). If q is in Q , its position is updated;
otherwise, q is inserted into Q . The algorithm returns the optimum-path forest
(predecessor map), root map, path-cost map, and the label map (object delineation
mask). Fig. 2.15 illustrates the execution of the IFT algorithm with fmax .
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Figure 2.15: Example of the IFT seed competition with fmax . (a) A 4-adjacent image graph
with numbers indicating arc weights based on image gradient, and squares rep-
resenting the seeds for two objects (red and yellow). (b)–(h) Iteration steps of
IFT. Numbers inside circles and squares indicate path-cost values. The resulting
optimum-path forest (OPF) is shown in (h).

2.5 ���������� �� ������������ ������

This section presents OPF-clustering [129], a data-clustering algorithm based on
optimum-path forests. OPF-clustering extends the IFT framework (Section 2.4)
from the image domain to the feature space by interpreting a training set as a
graph whose nodes are the samples, and their arcs are de�ned by an adjacency
relation. The nodes are weighted by their probability density values (pdf), and
a connectivity function is maximized, such that each local maximum of the pdf
becomes the root of an optimum-path tree (cluster), composed by samples “more
strongly connected” to that local maximum than to any other root. We use OPF-
clustering for the development of our proposed one-class classi�er, as presented
in Section 4.2.4. The theoretical background and algorithm of OPF-clustering are
presented next.

Let Z be a training set, and s 2 Z a given training sample. A random choice
of samples to compose Z makes the observations x = v(s) 2 Rn a random �eld,
whose probability density function (pdf) �(x) can be estimated as

�(x) =
Õ
8(s ,t )2A |v(s)=x exp

h
�d2(s ,t )

2� 2

i
Õ
8s 2Z |v(s)=y �(y)

, (2.4)
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where � > 0, d(s, t) = kv(t) � v(s)k, and A is an adjacency relation de�ned in the
feature space by

A : {(s, t) 2 Z ⇥ Z |s , t,

t is k � 1 nearest neighbor of s in Rn}. (2.5)

A clustering in Z can be obtained by separating the domes of the pdf, such that
the samples in each dome compose one cluster. The authors in [129] formulated
this problem as an optimum-path forest problem in a graph. Their method selects
one root sample per local maximum of the pdf such that each remaining sample is
assigned to the cluster of the root that connects to it by an optimum path. A path
is optimum in the sense that the minimum density value along it is maximum
concerning the values of other paths to the same node. In order to guarantee that
the roots will reach the remaining samples in the same dome, they �rst consider
the extended adjacency relationAe , which is symmetric on the plateaus of the pdf.

Ae : {(s, t) 2 A [ {(t, s)}|(t, s) < A
and �(s) = �(t)}, (2.6)

where �(s) = �(v(s)) = �(x). The parameter � = max8(s ,t )2Ae {d(s, t)} is �xed and
the graph (Z,Ae ) is weighted on the nodes s 2 Z by �(s) and on the arcs (s, t) 2 Ae
byd(s, t). A path �t with terminus t is a sequence hs1, s2, . . . , sm = ti of nodes, such
that (si , si+1) 2 Ae , i 2 [1,m], �t = hti is said a trivial path, and �t = �s · hs, ti is
the concatenation of �s and hs, ti with the two joining instances of s merged into
one. The path-value function f of minimum density is de�ned as

f (hti) =
(

�(t) if t 2 R,
�(t) � � otherwise,

f (�s · hs, ti) = min{ f (�s ), �(t)},
(2.7)

where � = min8(s ,t )2Ae {|�(t)��(s)|} andR is a root set with one sample per max-
imum of the pdf, as selected during the algorithm. The optimum-path forest algo-
rithm has been �rst presented in [60] (Section 2.4), and the su�cient conditions
for its correctness are established with proof in [131]. It canmaximize a path-value
mapV (t) = max8�t 2�{ f (�t }, where � is the set of all paths in the graph, by parti-
tioning the graph into an optimum-path forest P — an acyclic map that assigns to
each node t 2 Z its predecessor P(t) = s 2 Z in the optimum path with terminus
t or a marker P(t) = nil < Z , when the node t 2 R is a root of the map. Once
the optimum-path forest is de�ned, new samples t < Z can be assigned to one
of the obtained clusters by evaluating the values of the extended paths �s · hs, ti,
8s 2 Z . In [134], the authors simplify this process for the sake of e�ciency by
considering an adjacency radius �(s) = max8t 2A(s){d(s, t)}, where A(s) is the set
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of the k nearest neighbors of s , and giving a sample priority for s 2 Z , to conquer
new samples t , proportional to its optimum path value V (s). That is, t is assigned
to the cluster of the root R(s⇤) of s⇤ whose

�(s⇤) = max
8s 2L |d (s ,t )�(s)

{�(s)}, (2.8)

where L is that priority list. When t does not satisfy the condition d(s, t)  �(s)
for any s 2 L, t is assigned to the cluster of its closest sample in L.

Algorithm 2: Clustering by Optimum Path Forest
Input: Graph (Z,Ae ) and the pdf �.
Output: Root map R and sorted list L.
Aux :Path-value map V , a binary heap Q , and variable tmp.

1 foreach s 2 Z do
2 R(s) s
3 V (s) �(s) � �
4 insert s in Q

5 while Q is not empty do
6 Remove s from Q such that s = ar�max8t 2Q {V (t)}
7 Insert s in L
8 if R(s) = s then
9 V (s) �(s)

10 foreach t 2 Ae (s) and V (t) < V (s) do
11 Compute tmp  min{V (s), �(t)}
12 if tmp > V (t) then
13 R(t) R(s)
14 V (t) tmp

Algorithm 2 presents the clustering by Optimum Path Forest. The process starts
by de�ning all nodes as trivial paths hsi with values f (hsi) = �(s) � � (Lines 1–4,
Eq. 2.7). In the main loop (Lines 5–14), the nodes are removed fromQ in their non-
increasing order of path value. When the �rst node of a pdf maximum is removed
fromQ , Line 9 updates its root value according to Equation 2.7. In the internal loop
(Lines 10–14), the roots R(s) conquer the remaining nodes t of the same plateau
and dome of the pdf whenever the value f (�s · hs, ti) (Line 11, Eq. 2.7) is higher
than the valueV (t) (Line 12) of the current path �t , assigning t to the same cluster
of s (Lines 13–14). In the end, only the roots of the forest have R(s) = s .
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2.6 ��������� �������� ������ (���)

A last point for discussion is the choice of the parameterk . As suggested in [129],
we �nd k 2 [1,kmax] as the one that produces a minimum normalized cut cut(k)
in (Z,Ae ).

cut(k) =
’
8r 2R

W 0
r

Wr +W 0
r
,

Wr =
’

(s ,t )2Ae |R(s)=R(t )=r

1
d(s, t) ,

W 0
r =

’
(s ,t )2Ae |R(s)=r,R(t )

1
d(s, t) .

(2.9)

The upper limit kmax is an application-dependent parameter — larger it is, fewer
clusters are obtained. Therefore, the only parameters are the size of the removed
trees and kmax. In this thesis, we �xed kmax equal to 15% of the number of training
samples and eliminated trees with less than �ve nodes from the training set.
Section 4.2.4 presents our proposed one-class classi�er that extends OPF-

clustering for anomaly detection.

2.6 ��������� �������� ������ (���)

A crucial step of the considered pipeline towards answering our research ques-
tions (Fig. 1.6) consists of selecting volumes of interest (VOIs) for the subsequent
analysis. A strategy for VOI selection, which we explore throughout this thesis
(Chapters 5 and 6), is supervoxel segmentation.

Supervoxels are groups of connected voxels with similar characteristics result-
ing from an oversegmentation of a 3D image or region of interest. Similarly, the
term superpixels is used for 2D images. They preserve essential image information
(e.g., the borders of tissues and lesions) and are used as an alternative to patches to
de�ne more meaningful VOIs for computer-vision problems [135, 136] and some
medical image applications [6, 137]. For example, one can oversegment the hemi-
spheres in multiple supervoxels for brain anomaly detection.
In this thesis, we consider the Iterative Spanning Forest (ISF) framework [61]

for supervoxel segmentation. ISF is a recent approach for both superpixel and su-
pervoxel segmentation that has shown higher e�ectiveness than several state-of-
the-art counterparts, especially when used for 3D MR image segmentation of the
brain [61]. ISF consists of three key steps: (i) seed sampling followed by multiple
iterations of (ii) connected supervoxel delineation based on IFT [60] (Section 2.4),
and (iii) seed recomputation to improve delineation. We next present the theoret-
ical background for ISF as well as its algorithm. For the sake of clarity, we use the
same nomenclature presented in Section 2.4.
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2.6.1 Theoretical Background

Recall the pair Î = (DI , ÆI ) be a d-dimensional multi-band image, where DI ⇢ Zd is
the image domain, and ÆI : DI ! Rc is a mapping function that assigns a vector of
c real-valued intensities ÆI (p) — one value for each band (channel) of the image —
to each element p 2 DI . For simplicity, assume that the term voxels represents the
d-dimensional-image elements.

As outlined in Section 2.4, an image can be interpreted as a graphGI = (DI ,A),
whose nodes are the voxels, and the arcs are de�ned by an adjacency relation
A ⇢ DI ⇥ DI , with A(p) being the adjacent set of a voxel p. In this work, we con-
sider the 6-neighborhood adjacency for ISF (Fig. 2.13a).

For a given initial seed set S , labeled with consecutive integer numbers
{1, 2, · · · , |S |}, and a connectivity function f , ISF computes each supervoxel as a
spanning tree rooted at a single seed, such that the seeds compete among them-
selves by o�ering lower-cost paths to conquer their most strongly connected vox-
els. We use the following connectivity function f given by

f (hqi) =
(

0, if q 2 S ,
+1, otherwise,

f (�p · hp,qi) = f (�p ) +
h
� · kÆI (q) � ÆI (R(p))k

i �
+ kq � pk,

(2.10)

where kÆI (t) � ÆI (R(p))k is the Euclidean distance between the intensity vectors at
voxels R(p) andq, kq � pk the Euclidean distance between the voxelsp andq, hqi is
a trivial path, �p · hp,qi the extension of a path �p with terminus q by an arc hp,qi,
and R(p) the starting node (seed) of �p . The factors � and � serve to control a com-
promise between supervoxel boundary adherence and shape regularity. Although
the authors of ISF have �xed � = 0.5 and � = 12 during the experiments [61], such
factors are problem-dependent and should be optimized to yield more accurate su-
pervoxels. Fig. 2.16 shows the impact of � and � for the superpixel segmentation
of a 2D brain image.

2.6.2 The ISF Algorithm

Algorithm 3 presents a pseudo code for the Iterative Spanning Forest framework.
At each iteration (Lines 2–4), ISF performs connected supervoxel delineation on
the image I based on IFT (Line 3) — as described by Algorithm 1 — from a given
seed set S 0, adjacency relation A, and the connectivity function f described by
Equation 2.10. The seed set at Iteration 1 is the initial seed set S (Line 1). Next,
the seed set is recomputed by the function SeedRecomputation to improve delin-
eation (Line 4). This process continues until reaching N iterations. The algorithm
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α=0.01, β=12 α=0.1, β=12 α=0.5, β=12 α=1.0, β=12

(a) Di�erent values of � and � = 12.

α=0.5, β=1 α=0.5, β=5 α=0.5, β=8 α=0.5, β=12

(b) � = 0.5 and di�erent values of � .

Figure 2.16: The impact of the factors � and � for superpixel segmentation by ISF. Each
superpixel is represented by a di�erent color. For all cases, we performed ISF
on the same 2D brain image with 10 iterations and identical 30 initial seeds
selected by grid sampling.

Algorithm 3: Iterative Spanning Forest

Input: Image Î = (DI , ÆI ), adjacency relation A, connectivity function f ,
initial seed set S ⇢ DI , and the maximum number of iterations
N � 1.

Output: Optimum-path forest P , root map R, path-cost map C , and
supervoxel label map L.

Aux :Seed set S 0, and the variable i .
1 S 0  S
2 for i  0 to N � 1 do
3 (P,R,C, L) IFT (Î ,A, f , S 0)
4 S 0  SeedRecomputation(Î , S 0, P,R,C)
5 return (P,R,C, L)

returns the optimum-path forest (predecessor map), root map, path-cost map, and
the supervoxel label map. Fig. 2.17 illustrates the execution of ISF.
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(a) Iteration 0. (b) Iteration 3.

(c) Iteration 6. (d) Iteration 9.

Figure 2.17: Example of the ISF execution (10 iterations with � = 0.5 and � = 12) on a 2D
brain image. (a)–(d) For iterations of ISF. For each iteration, we show its input
seeds (red points) and the resulting obtained superpixels (each color represents
a di�erent superpixel). Iteration 0 shows the initial seed set obtained by grid
sampling; the other seed sets are obtained by seed recomputation. As the insets
show, most seeds do not change positions over iterations.

In this work, we adopted a seed-recomputation strategy proposed by Vargas-
Muñoz et al. [61], as detailed next. At each iteration, we promote the centroids
from the obtained supervoxels — i.e., their geometric centers — to be the seeds of
the next iteration. If a given centroid ci is out of its supervoxel Li — due to the
non-convex shape of Li — we select the voxel of Li that is the closest to ci . We
refer to Vargas-Muñoz et al. [61] for more speci�c details.

A crucial step for the success of ISF consists of performing a robust initial seed
estimation. This step, however, is problem-dependent, so that simple and general
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strategies — e.g., a grid sampling in the input image — can provide unsatisfac-
tory results (e.g., undersegmentating a lesion). Chapters 5 and 6 introduce two
ISF-based algorithms for supervoxel segmentation tailored to speci�c constraints.
Both algorithms present di�erent strategies to build a 2-band volumetric image
from a 3D MR image, as well as robust initial seed estimations that lead to better
�nal supervoxels (e.g., a supervoxel that correctly �ts a lesion).

2.7 ����������

In this chapter, we have summarized the main background information on con-
cepts explored in this work, which involves basic brain anatomy, imaging physics,
and typical MRI preprocessing operations. Besides, we introduced image foresting
transform, a robust framework widely used for the development of several image
operators throughout this thesis.
From the reviewed material, we can conclude that the pipeline of medical im-

age analysis for brain data is complex, having many steps of various natures, and
primarily demanding concepts on anatomy and imaging physics. Each of these
steps is crucial, in its own way, to provide a good-quality �nal result, i.e., a good
anomaly detection, towards our research questions. In particular, we highlight the
importance of the presented MRI preprocessing operations (Section 2.3) for the
success of such a pipeline since MRI data typically presents acquisition artifacts
of di�erent characteristics — e.g., noise, inhomogeneities, and variability of inten-
sity and contrast —which negatively impact bothmedical diagnosis and automatic
analysis.
The rest of this thesis is dedicated to improving the various steps of the consid-

ered medical image analysis pipeline.
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3AU TOMAT IC BRA IN IMAGE SEGMEN TAT ION

The precise delineation of 3D objects (e.g., organs and lesions) in 3D MR brain
images has been an active research topic over the last decades [138, 139]. A com-
mon example is brain segmentation that aims to separate the so-calledmacro brain
structures: the right and left hemispheres, cerebellum, and brainstem. Brain seg-
mentation is typically used for a better understanding of neurological diseases, the
study of brain asymmetries [18], morphological analysis of the hemispheres [80],
surgical planning [29], and the development of computer-aided diagnosis sys-
tems [140]. Regarding our research questions, brain segmentation supports the
proposed unsupervised anomaly detection approaches in di�erent steps: (i) for in-
tensity normalization (Section 2.3.6); (ii) to warp both hemispheres for anomaly
detection on the native image space (Section 5.5); and (iii) to perform anomaly
detection in each object of interest individually (Chapter 6).
The absence of well-de�ned boundaries between the macro brain structures

in MR images makes brain segmentation challenging. Fully interactive segmen-
tation methods require a high number of user intervention, becoming a tedious,
time-consuming, and error-prone task, especially for studies involving large
datasets [141]. Moreover, such methods require specialists with considerable
experience in manual delineation. The use of prior anatomical information
(shape constraints) can either mitigate the problem or eliminate the need for user
interaction.

Atlases: Probabilistic atlases (PAs), also known as statistical object shape models,
are popular and well-succeeded examples of shape constraints for automatic brain
segmentation [41, 120, 141–144]. Methods based on PAs estimate the probability
of a voxel to be part of a given object regardless of its intensity in the original im-
age [41, 120, 143]. Some techniques, such as SOSM-S [120], combine these prob-
abilities with a delineation algorithm to obtain better-re�ned object boundaries.
However, the existing models do not adapt to possible object anomalies caused
by the presence of a disease or a surgical procedure (Fig. 3.1). Such anomalies
often alter the shape and texture of the brain structures, making them di�erent

This chapter is based on the following publications:
(i) A. X. Falcão, T. V. Spina, S. B. Martins, and R. Phellan, “Medical image segmentation using object
shape models: A critical review on recent trends, and alternative directions,” VipIMAGE, pp. 9–15, 2015;
(ii) S. B. Martins, T. V. Spina, C. L. Yasuda, and A. X. Falcão, “A multi-object statistical atlas adaptive for
deformable registration errors in anomalous medical image segmentation,” in SPIE Medical Imaging,
vol. 10133, pp. 691–698, 2017. Honorable mention;
(iii) S. B. Martins, J. Bragantini, C. L. Yasuda, and A. X. Falcão, “An adaptive probabilistic atlas for
anomalous brain segmentation in MR images,” Medical Physics, vol. 46, no. 11, pp. 4940–4950, 2019.
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from the appearance of the model. One might post-process the resulting segmen-
tation masks, for example, by removing cerebrospinal �uid (CSF) voxels obtained
by tissue classi�cation (Fig. 3.1f). However, post-processing does not �x existing
segmentation errors of the model on gray matter (GM) and white matter (WM)
voxels – e.g., voxels between the hemispheres in Figs. 3.1e–f. Post-processing can
still increase those segmentation errors (Fig. 3.1f).

R

(a) (b)

L

(c)

R

(d) (e)

L

(f)

Figure 3.1: Automatic brain segmentation by the probabilistic-atlas-based method SOSM-S
[120]. (a) Coronal slice of a 3D brain image after left temporal lobe resection
(arrow). (b) The corresponding slice of a prior probability map for the left hemi-
sphere (blue and yellow voxels indicate the certainty and uncertainty regions,
respectively). (c)Overlapping between (a) and (b). (d) Estimated seeds for object
delineation. (e) Coronal slice of the resulting 3D object mask (blue) and the gold-
standard border (red). Arrows indicate segmentation errors. (f) Post-processed
objectmask after removing voxels classi�ed as CSF by expectationmaximization
algorithm [145].

Deep learning methods: Recent work proposes deep neural networks for seg-
menting GM,WM, and CSF [11, 32]; hippocampus [57]; brain lesions [35, 146]; and
skull [114]. These approaches usually (i) take high processing times, (ii) depend
on a large number of training images, which must be previously annotated by
experts; and (iii) may require weight �ne-tuning (retraining) when used in each
new distinct set of images [11]. The latter is certainly a signi�cant limitation, due
to the di�culty of annotating medical image training sets with 3D objects [147],
the image variability across scanners and acquisition protocols, and di�erences be-
tween healthy and pathological brain tissues. In this sense, methods that rely on
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object-shape-basedmodels and texture classi�ers, which can be created from a few
labeled voxels, are more attractive. Our proposed research falls into this category.
In this chapter, we present an e�ective and e�cient adaptive probabilistic at-

las, named AdaPro, to circumvent the above limitation. Our method adapts shape
constraints on-the-�y according to the presence of detected anomalies in the tar-
get image. The adaptive model uses a binary texture classi�er trained from a few
background and object voxels on a template (reference 3D image). It relies only
on voxel feature representation and texture classi�cation to adapt its probabilistic
atlas. Finally, AdaPro performs a new object-based delineation algorithm based on
combinatorial optimization and di�usion �ltering [148, 149] for shape smoothing.
We structure this chapter as follows. Section 3.1 presents related work on object-

shape-based models for automatic brain image segmentation and details the base-
lines considered during experiments. Section 3.2 introduces AdaPro. Section 3.3
describes the experimental setup, while Section 3.4 presents and discusses the re-
sults. Finally, Section 3.5 concludes this chapter.

3.1 ������� ����

Image segmentation involves two tightly coupled tasks: object recognition and
object delineation [150]. Recognition indicates the whereabouts of the desired ob-
ject, while delineation precisely de�nes its spatial extent in the image.1 Some ap-
proaches can present di�erent levels of automation for each task, varying from
purely manual to fully automatic. This thesis only focuses on fully automatic ap-
proaches.
Atlas-based segmentation, also called object-shape-based segmentation, is one

of the most widely-used and successful approaches for automatic brain image seg-
mentation. These methods use the a priori knowledge about objects’ shapes from a
training set X = {A1, · · · ,An} with n atlases. Each atlas Ai = (Ii ,Mi ) consists of a
source 3D image Ii (e.g.,MR image) and its corresponding 3D label imageMi with
the segmentation mask of each 3D object of interest. These segmentation masks,
called gold standards, are obtained frommanual or semi-automatic interactive seg-
mentation by one or multiple experts. This process typically requires outlining the
structures in a slice-by-slice fashion, resulting in a time-consuming, tedious, and
error-prone task [11].
The simplest atlas-based methods [151–153] rely on a single atlas Ar = (Ir ,Mr )

and segment a 3D test image I by propagating the labels fromMr to I after image
registration between I and Ir (template). However, since registration does not per-
fectly align the borders of the registered image and the template (Section 2.3.4), a
single atlas is insu�cient to capture wide anatomical variations, especially when
anomalies are present in I . This strategy evolved to probabilistic atlases (PAs) and
then to Multi-Atlas Label Fusion (MALF), as discussed next.

1 Some authors commonly use the term segmentation to refer to delineation so that recognition is implic-
itly assumed [150].
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3.1.1 Probabilistic Atlas

Methods based on PAs estimate the probability of a voxel is part of a given object
regardless of its intensity in the original image [41, 120, 143]. Fig. 3.2 shows the
general pipeline of these methods. The construction of a PA initially requires the
selection of a standard template Ir (Fig. 3.2, Step 1). One can select the most simi-
lar atlas to the others in the training set [120] or use a well-established coordinate
space, such as the popular MNI template [108]. The training source images are
then registered to Ir by non-rigid registration, and their segmentation masks are
also mapped to Ir by applying the corresponding transformations (Fig. 3.2, Step 2).
Once the training atlases are on the same coordinate space, one computes a prior
probabilistic map P (Fig. 3.2, Step 3), where each voxel � has a prior probability
of belonging to a given object of interest [144] — i.e., the frequency in which �
assumes the label of such object in all training masks (see the resulting map for
AdaPro posteriorly illustrated in Fig. 3.6). All voxels with probability within (0, 1)
form the uncertainty region, where the object’s boundaries are likely to fall. For
segmentation, the unseen test image It is mapped on to the coordinate system of
P (recognition), and delineation (Fig. 3.2, Steps 4–5) typically involves threshold-
ing the prior probabilities associated to the voxels [104, 154], or estimating and
thresholding a posterior probabilities [120, 155], or by using other image process-
ing operators [120, 147, 156].
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Figure 3.2: General steps for the construction and use of probabilistic atlases for automatic
image segmentation.

PA-based methods have been actively investigated in the past decades [41, 120,
141, 144, 147, 154–158]. For example, the well-known FreeSurfer [144] automat-
ically segments several brain anatomical structures by combining the use of a
Markov random �eld and probabilistic atlases into a Bayesian framework [144,
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157]. Despite being widely accepted as the de facto standard of brain segmenta-
tion in many anatomical studies [144, 159], FreeSurfer demands a considerably
high processing-time to segment an image (⇠ 15h), which makes it impracticable
for clinical routine and studies involving large datasets.
Some strategies combine registration and delineation into a probabilistic frame-

work [147]. Pohl et al. [155] proposed using the expectation-maximization (EM) al-
gorithm [160] to �nd the optimum parameters for registration while labeling each
voxel to a brain tissue. Ashburner and Friston [158] proposed a uni�ed objective
function to segment brain tissues (CSF, WM, and GM) while correcting the bias
�eld and re�ning registration, whose parameters are derived from a mixture of
Gaussians. Since this approach uses only healthy-shape priors, it fails to segment
images with some anomalies.
The accuracy of PA-based approaches is very sensitive to registration errors,

mainly caused by the inter-subject variability in anatomical patterns [147]. Some
methods then use image processing operators to attenuate the impact of such er-
rors while re�ning the �nal delineations of the brain structures. Grau et al. [156]
use the watershed algorithm [133] from seeds corresponding to each brain-tissue
class. Such seeds are estimated as the skeletons calculated from the probabilistic
atlas.
Recently, Phellan et al. [120] have demonstrated that if we acknowledge regis-

tration errors, the accuracy of probabilistic atlases may be signi�cantly improved
as long as a local search for the object is performed with the model. For this pur-
pose, their probabilistic atlas, named SOSM-S, uses a triple {P,D, F } composed of
the traditional prior probability map P (Fig. 3.6), a delineation algorithm D, and a
criterion function F . The goal of P is to impose the object’s shape learned from
the training atlases, which aims to constrain the delineation with D to occur only
for uncertain voxels. The delineation algorithm D, in turn, aims to adapt the shape
constraints to the test image, rather than merely thresholding P after registration.
SOSM-S uses the watershed transform by the Image Foresting Transform (IFT) al-
gorithm [60] for object delineation (Section 2.4). Criterion F is used for the local
object search to mitigate registration errors. The search requires the translation
of P over the registered test image, delineating a candidate object with D at every
position. Then, it evaluates the resulting mask with F , which is expected to be
maximum when the candidate mask corresponds to the target object. Such syner-
gistic operation between object localization and delineation constitutes the task
of segmentation and stems from Fuzzy Object Shape Models [161].
Despite the success of SOSM-S for brain segmentation in control images, the

method fails in the presence of anomalies since the model imposes the shape of
healthy organs (Fig. 3.1). Moreover, only MR-T1 brain images of 2T were used
for evaluation, ignoring inherent problems of higher quality 3T images (e.g., �eld
inhomogeneity and noise). SOSM-S’ local search, in turn, may require considerable
processing time for performing IFT delineation for each candidate in the search
region.
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In this thesis, we revisited SOSM-S to present a faster adaptive model, named
AdaPro, for anomalous brain segmentation with the following contributions:

1. We incorporate a texture classi�er based on convex optimization that indi-
cates on-the-�y the regions of the target 3D image where the shape con-
straints should be further adapted on the probabilistic atlases (i.e., disre-
garded during object delineation). This strategy avoids the problems of ap-
plying the classi�er as a post-processing operation (Fig. 3.1f);

2. We increase the uncertainty region of the statistical shape model (by ero-
sion and dilation) to avoid local object search, as adopted by SOSM-S. This
strategy makes the segmentation considerably faster;

3. We added the object relaxation procedure from Moya and Falcão [149] to
improve segmentation accuracy and make the objects’ appearances more
pleasant (without jagged edges);

4. We extended the brain segmentation to the native coordinate space of the
test images.

Section 3.2 introduces AdaPro and details the above contributions.

3.1.2 Multi-Atlas Label Fusion (MALF)

Methods based on Multi-Atlas Label Fusion (MALF) aim to suppress registra-
tion errors by considering that each training atlas Ai = (Ii ,Mi ) produces one
candidate segmentation per test image It . Each training atlas is registered on
to It so that the fusion of all mapped segmentation masks generates the �nal
segmentation [80, 104, 162–166]. MALF can be performed either in the native or
template space. Fig. 3.3 presents the general steps of MALF.

A|Ѵav 
SeѴec|ion

vegmen|a|ion 
mavk

LabeѴ 
F�vion

|ev| image

Regiv|ua|ion|uain
a|Ѵavev

Figure 3.3: General steps of Multi-Atlas Label Fusion for image segmentation.

Challenges: The computational bottleneck of MALF consists of registering the
entire training atlas set to It , which demands the most signi�cant processing
time during segmentation [104]. Some MALF methods then select the subset of
the k most similar training atlases to It (atlas selection) to make the segmentation
faster, which is particularly important in scenarios where time is a signi�cant

46



3.1 ������� ����

constraint [104]. Moreover, when removing training atlases that are anatomically
unrepresentative to It , one might expect to improve the segmentation accu-
racy [167].

Pipeline: Most atlas-selection methods rank the relevance of the training atlas
setX by employing a given metric based on image-similarity [167–169]. Aljabar et
al. [167], for example, proposed the use of normalizedmutual information (NMI) to
rank X — see more details of NMI in Appendix C.1. Initially, the method chooses
a reference image Ir from X and maps all training atlases to Ir . A test image It
is then registered on to the space of Ir and the NMI between It and each image
in X is computed. Finally, the method selects the k top-ranked training atlases
for subsequent segmentation. This approach considerably reduces the number of
registrations during atlas selection. Asman et al. [170] replace NMI with principal
components analysis to de�ne atlas similarity metrics. More recently, other works
rely on clustering to select the most similar training atlases [171, 172] to It . For
instance, Nouranian et al. [171] partition the set It [X into k clusters by using the
K-means algorithm [173] and select a subset of training atlases belonging to the
same cluster of It .
Once the k most relevant training atlases are selected, their source images are

registered on to the coordinate space of It , and their masks are also mapped to
by applying their corresponding deformation �elds. Although non-rigid registra-
tion is time-consuming, it is preferable in MALF applications for better captur-
ing anatomical variation between di�erent subjects [147], resulting in higher seg-
mentation accuracies [104]. Typical non-rigid registration techniques are based
on mathematic transformations, such as cosine-based functions [174], B-spline
curves [107], and level set partial di�erent equations [175].
Finally, the propagated labels from the registered segmentation masks are

combined (label fusion) to generate the �nal segmentation. The simplest solution
is majority voting, which selects the most frequent label at each voxel [176].
Other works assign a local or global weight for each registered training atlas
during label fusion, which re�ects the similarity between the test image and the
atlas [112, 162, 163, 177]. For instance, Artaechevarria et al. [177] compute global
weights from the NMI between the training atlases and the test image. One of
the most popular techniques is STAPLE [164], which weights each training atlas
using the expectation-maximization algorithm. Alternative strategies estimate
local weights by computing local cross-correlation [178], local mutual informa-
tion [179], and local registration accuracy [180]. Recent label-fusion techniques
involve the use of patches to compute weights at each voxel [181, 182].

Implementations: In the context of brain image segmentation, we highlight the
recent software called volBrain [80], a solution that provides segmentation and
structure asymmetry ratios at di�erent scales for intracranial cavity (skull strip-
ping), tissue volumes (GM, WM, and CSF), brain segmentation, lateral ventricles,
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and subcortical GM structures. volBrain has reached superior segmentation re-
sults as compared to well-established and publically available solutions, such as
FreeSurfer [144] and FIRST [183], serving as a starting point for works regarding
brain image analysis.

volBrain uses NABS (Non-local Automatic Brain hemisphere Segmenta-
tion) [162] for brain segmentation. This method randomly selects 30 atlases from
a training set of healthy subjects (with ⇠ 600 atlases), which are then prepro-
cessed using the following operations: noise reduction, registration on to linear
MNI space [108], skull stripping, inhomogeneity correction, and intensity normal-
ization. After preprocessing the test image, NABS performs a tissue classi�cation
that only considers WM, GM, and CSF. Finally, the non-local label-fusion tech-
nique proposed by Coupe et al. [181] segments the hemispheres, cerebellum, and
brainstem. This label fusion estimates the in�uence of each atlas for each voxel �
by computing the Euclidean distance of a 3D patch around� in the test image and
the source images from the chosen atlases. We considered volBrain as a baseline
in our experiments (Section 3.3).

3.2 �������� ������������� ����� (������)

We propose an Adaptive Probabilistic atlas (AdaPro) for anomalous brain image
segmentation that incorporates a texture classi�er during object delineation. This
classi�er indicates on-the-�y the regions of the target 3D image where the shape
constraints should be further adapted (i.e., regions disregarded during segmenta-
tion) due to the presence of abnormalities (Fig. 3.1a). Fig. 3.4 presents the steps for
the construction and use of AdaPro, whereas Fig. 3.5 shows resulting images of
these steps for the segmentation of both hemispheres and cerebellum. Although
some �gures presented in this section show examples with MR slices, AdaPro uses
3D MR images.

3.2.1 Construction

Recall a training set X = {A1, · · · ,An} with n atlases of healthy subjects, where
each atlasAi = (Ii ,Mi ) consists of a source 3D image Ii and its corresponding label
imageMi with the mask of each 3D object of interest.

Template Selection

Since our method is based on registration, the �rst step is to select a standard
reference coordinate space (template) where the probabilistic atlas will be con-
structed. This template might be a popular atlas, such as MNI [108], or the most
similar training atlas to the entire training set. We apply the same procedure em-
ployed by Phellan et al. [120] that selects the training atlas Ar = (Ir ,Mr ) whose
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Figure 3.4: Pipeline for the construction and use of AdaPro.

union of the object masks in Mr has the least mean Average Symmetric Surface
Distance (ASSD; Appendix C.2) to all others from X . The idea is to reduce the
amount of deformation each image must undergo for model construction.

Preprocessing and Registration

As outlined in Section 2.3, automated MR image segmentation is challenging
due to inherent problems of image acquisition, such as noise, �eld inhomogeneity,
and variability of the intensity ranges, mainly in high-resolution images from 3T
scanners, for example. We then perform some image processing operations, as
detailed in Section 2.3, to improve the quality of the images.
We �rst apply noise reduction by median �ltering, followed by MSP alignment,

and an inhomogeneity correctionwith N4 [102]. The resulting images are then reg-
istered to the template Ir by non-rigid registration (Section 2.3.4), and their masks
are also mapped to by applying their corresponding deformation �elds (Figs. 3.5a–
b).

Probabilistic Atlas Creation

For each objectm, we build a probabilistic atlas Pm by counting the frequency
of the label assignment from all training registered atlases Ai 2 X and keeping
the mostly assigned label to each voxel. Label assignment only takes into account
the objectm and the background (label 0). This frequency corresponds to the prior
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

Figure 3.5: AdaPro segmentation. (a) Axial slice of a post-surgery 3D MR-T1 image (the
arrow indicates an anomaly). (b) Object localization mask on the preprocessed
and registered image. (c)Histogrammatching of (b). (d) Positive voxels (orange)
after texture classi�cation. (e)–(g) Estimated seeds from the adaptive models
for the background and target objects. Magenta voxels indicate the forbidden
regions imposed by (d). (h)Gradient of (c). (i)–(j)Delineated objects in 2D (axial
slice) and 3D.

probability of the voxel to belong to object m. Fig. 3.6 depicts the probabilistic
atlases for the cerebellum and brain hemispheres.

One might also build a single multi-object probabilistic atlas with all objects
under study. However, a previous study showed that the use of a probabilistic
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1

0

R L

Figure 3.6: Axial, coronal, and sagittal slices of the combination (only for visualization) of
probabilistic atlases for the cerebellum (red), right hemisphere (green), and left
hemisphere (blue). The brighter the object’s color, the greater its prior probabil-
ity value.

atlas for each object results in more accurate segmentation as compared to the
multi-object strategy [141].

Model Adaptation

We design a binary classi�erC based on a linear Support Vector Machine [184]
by interactively selecting training voxels on the 3D template Ir . SVM is fast
and robust to classify high-dimensional data (like ours). Brain tissue voxels are
considered positive samples and voxels with typically di�erent intensities (CSF
and image background) are considered negative samples. Each training voxel is
represented by its intensity and the intensities of all neighbors inside a sphere
of radius 5.0, resulting in a 515-dimensional feature vector. Fig. 3.7 shows an
example of chosen voxels on a given Ir .

Figure 3.7: Slices of the chosen template (reference 3D image) with the selected voxels to
design the texture binary classi�er. The brain tissue voxels (orange scribbles)
are the positive samples, whereas the voxels with di�erent intensities (magenta
scribbles) are the negative samples.
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3.2.2 Segmentation

Let It represent a target 3D brain image after preprocessing and non-rigid registra-
tion on to Ir (Fig. 3.5b). Each object of interestm is independently segmented by
following the steps, as detailed below. Then, all delineated objects are combined
to result in the �nal 3D label imageMt .

Object Localization and Histogram Matching

AsAdaPro relies on a texture classi�er to detect anomalous regions, thewide dif-
ferences in intensity and contrast among the 3D images, mainly when considering
images provided by di�erent scanners, must be attenuated to guarantee a similar
range of intensities for the same tissue. One could then apply a histogram match-
ing between It and Ir , but voxels from irrelevant tissues/organs for the addressed
problem (e.g., neck and bones) can negatively impact this operation. AdaPro cir-
cumvents this problem by binarizing the probabilistic atlas Pm of each object m,
followed by morphological closing to �ll small holes (e.g., small gaps inside sulci;
maximum volume of 8 ⇥ 8 ⇥ 8 mm3), and merging them into a single 3D binary
mask B (object localization mask). B can still be dilated if the user provides a di-
lation radius > 1 for seed estimation. Note that B contains all voxels from the
certainty and uncertainty regions for all target objects (localization) that indeed
de�ne the regions for object delineation (Fig. 3.5b). Finally, AdaPro performs a
histogram matching between It and Ir only inside the object voxels de�ned by B
(Fig. 3.5c).

Texture Classi�cation and Seed Estimation

We aim at estimating a seed set S = S0 [ Sm , where Sm ,m > 0, contains seed
voxels selected inside the object m, and S0 contains seed voxels selected in the
background. The borders of the dilated and eroded certainty region of Pm form
S0 and Sm , respectively. The dilation and erosion slightly increase the uncertain
region of Pm . Thus, seed estimation is simpler and faster as compared to SOSM-S
(Section 3.1.1), for example, since it avoids performing several delineations as it is
done during SOSM-S’ local object search.

To identify regions on It where shape constraints should be adapted, AdaPro
classi�es It with the texture binary classi�erC (Fig. 3.5d). Then, the residual image
of B vs the classi�cation forms a forbidden region F (magenta voxels in Figs. 3.5e–
g) that eliminates its voxels from the competition between internal and external
seeds during object delineation. This strategy will not work as a post-processing
operation, because object delineation without the forbidden region might mislabel
voxels from distinct objects.
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Object Delineation

For the delineation of each objectm, AdaPro uses a fast implementation [149]
of the Relaxed Image Foresting Transform (RIFT) algorithm [148], an IFT-based al-
gorithm (Section 2.4) that smooths the delineated object borders. This algorithm
�rst computes a watershed transform from labeled seeds de�ned by S = S0 [ Sm ,
exactly as in SOSM-S. The seed competition takes into account the gradient image
of It (Fig. 3.5h), whose voxels are expected to be brighter along the objects’ bound-
aries than elsewhere. Therefore, the voxels are conquered by the seed, which o�ers
the path whose maximum intensity along it is minimum as compared to any other
path from the remaining seeds. A fast di�usion �lter [149] then smoothes the re-
sulting mask. Since the segmentation of each objectm is performed independently,
when a voxel is assigned to multiple labels, its �nal label is the one with higher
probability value in the probabilistic atlas (Figs. 3.5i–j).

Segmentation on Native Image Space

AdaPro can segment It on its own native image space (NIS). The only change
for this is to map the probabilistic atlases to It by applying the transformations
(deformation �elds) resulting from the non-rigid registration between the template
Ir on to It . AdaPro then performs the remaining steps as previously presented.

One might use AdaPro to segment It on the template coordinate space and then
inversely mapping it to NIS. However, this approach cannot tackle segmentation
errors resulting from the inverse mapping. This strategy proposed by AdaPro is
di�erent, as it relies on object delineation to circumvent those registration errors.

3.3 ������������ �����

To assess the performance of AdaPro, we conducted a set of experiments. This sec-
tion describes the MR-T1 image datasets, compared methods, and the evaluation
protocol considered for the experiments. All computations were performed on the
same Intel Core i7-7700 CPU 3.60GHz with 64GB of RAM.

3.3.1 Datasets

We used six in-house datasets of 3D MR-T1 brain images of healthy subjects and
patients before and after temporal lobe resections, as presented in Appendix B.1.
All images were provided by the Neuroimaging Laboratory (LNI) at the Univer-
sity of Campinas (UNICAMP), Brazil. The datasets were divided into two groups
according to their �eld strengths.
Group A has three datasets of 2T images acquired with a 2T Elscint scanner and

voxel size 0.98⇥0.98⇥0.98mm3: (HEALTHY-2T) 19 images from healthy subjects,
(PRE-2T) 20 pre-operative images from epilepsy patients, and (POST-2T) 20 post-

53



��������� ����� ����� ������������

operative images from epilepsy patients. This group has 20 epilepsy patients with
a pair of pre- and post-operative images for each one.

Group B has three datasets of 3T images acquired with a 3T Siemens scanner
and voxel size 1 ⇥ 1 ⇥ 1 mm3: (HEALTHY-3T) 20 images from healthy subjects,
(PRE-3T) 30 pre-operative images from epilepsy patients, and (POST-3T) 60 post-
operative images from epilepsy patients. This group has 30 epilepsy patients to
which there are one pre- and two post-operative images.

A template obtained from HEALTHY-2T, with 165 ⇥ 255 ⇥ 255 voxels, was
considered for group A, whereas a template obtained from HEALTHY-3T, with
180⇥ 240⇥ 240, was used for group B. Therefore, our study involved a total of 169
images.

A neurologist from LNI has carefully delineated the cerebellum (C), right hemi-
sphere (RH), and left hemisphere (LH) to build the gold-standard segmentation of
all datasets. Consequently, brainstem is not considered in the experiments. Result-
ing segmentation masks consider that background voxels have label 0 and each
object has label m = 1, 2, . . . , L, where L is the total number of objects. Fig. 3.8
presents examples of the considered datasets.

3.3.2 Evaluation Protocol

We compared AdaPro2 with three atlas-based methods: SOSM-S [120], volBrain
[80], and a MALF technique instantiated with the popular atlas selection of Al-
jabar et al. [167] and STAPLE label fusion [164]. All these methods are detailed in
Section 3.1.

The quality, resolution, and brain tissues’ intensities are quite di�erent in 2T
and 3T MR-T1 images (Section 2.2.2), even after applying the same preprocessing
operations detailed in Section 3.2.1. For example, 2T images are noisier than 3T
images, whereas �eld inhomogeneity is higher in 3T than 2T images — compare
the examples in Fig. 3.8. Thus, a single texture classi�er — designed from voxels
selected in a template acquired with a given �eld strength — may not be accu-
rate when classifying anomalies in images acquired with di�erent �eld strength.
Therefore, we evaluated Groups A and B independently (Section 3.3.1). For each
one, we considered its dataset of healthy subjects as the training set, which is used
for SOSM-S, MALF, and AdaPro. volBrain uses its own training atlas set since we
do not have access to it.

We considered the entire training set to construct the probabilistic map of
SOSM-S and AdaPro. Due to processing-time constraints, MALF used all images
of HEALTHY-2T for evaluation in group A, and it selected the 20 top-ranked train-
ing atlases from HEALTHY-3T for each test image during validation in group B.
All methods used the same 3D template (reference image) which consists of the

2 All binaries of AdaPro can be found on https://github.com/lidsunicamp/MedicalPhysics19_

AdaPro
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(a) HEALTHY-2T (b) PRE-2T (c) POST-2T

(d) HEALTHY-3T (e) PRE-3T (f) POST-3T

Figure 3.8: Examples of the considered datasets for brain segmentation. Each example
shows an axial slice of the 3D MR-T1 image after preprocessing, and its gold-
standard segmentation. Arrows indicate removed tissues after lobe resection.
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most similar atlas to the others in the training set. We performed all registrations
by the Elastix3 software [107].

The linear SVM texture classi�er from AdaPro was trained from positive and
negative voxels chosen on the template of each group (Fig. 3.7). We set the SVM
penalty parameterC to 10�5. For each objectm, AdaPro requires the choice of the
radii d and e for dilation and erosion of the probabilistic atlas, respectively. We
used the training set of each group to determine the best choice for these parame-
ters by grid search. The values (dC ,dRH ,dLH ), (eC , eRH , eLH ) found respectively for
the cerebellum (C), right hemisphere (RH), and left hemisphere (RH) are: group A
(0, 0, 0), (1, 2, 2) and group B (0, 0, 0), (1, 2, 2). These values were then �xed for all
experiments.

Since not all baselines work in both template and native image spaces, we made
some adaptations. The software volBrain outputs brain segmentation masks in
native and MNI linear space (after mapping the input image by a�ne registration).
To obtain the segmentation masks in the coordinate space of the chosen templates
for the groups, we used the registered test images as input for volBrain. Conversely,
SOSM-S only performs the segmentation in the template space. Then, for each test
image, we applied the inverse transformation on its segmentation masks in order
to have them in the native space of each test image.

3.4 �������

This section presents and discusses the results of the quantitative evaluation of
the methods on the two datasets of epilepsy patients from each group. In our
evaluation, we will rely more on the Average Symmetric Surface Distance (ASSD;
Appendix C.2) score (in millimeters) as segmentation accuracy measure than on
global measures such as Dice (Appendix C.2). ASSD better captures segmentation
errors along the segmented boundaries than Dice, especially in the case of post-
operative images with removed portions of the brain (Fig. 3.8). However, we also
include Dice in the results due to its wide popularity in the literature. Finally, we
performed an analysis of variance (ANOVA) to compare the resulting mean scores
between the considered methods.

Tables 1 and 2 present the ASSD score (lower is better) for the epilepsy datasets
of 2T images and 3T images, respectively. Tables 3 and 4, in turn, present the Dice
score (higher is better) for the same datasets. The numbers correspond to the mean
and standard deviation values of all instances of each object of interest. Resulting
p-values from the ANOVA test are shown in parenthesis for each evaluation sce-
nario. Fig. 3.9 shows the mean segmentation errors in the template space for the
considered baselines.

SOSM-S and MALF perform worse on post-operative images because they can-
not capture abnormalities, as evidenced in Fig. 3.9. Note that errors occur mainly

3 We use the par0000 �les available on http://elastix.bigr.nl/wiki/index.php/Parameter_

file_database
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Table 1: Comparison of ASSD (mm) for the Cerebellum (C), Right Hemisphere (RH), and
Left Hemisphere (LH) of the pre- and post-operative images of 2T. Lower ASSD
means better accuracy (bold scores are the best with statistical signi�cance). Re-
sulting p-values from ANOVA test are in parenthesis.

Epilepsy Datasets (Group A) - ASSD

PRE-2T POST-2T

C RH LH C RH LH
SOSM-S 0.90 ± 0.08 0.99 ± 0.12 1.07 ± 0.14 0.79 ± 0.15 1.41 ± 0.20 1.32 ± 0.39

MALF 0.88 ± 0.18 0.93 ± 0.08 0.91 ± 0.11 1.15 ± 0.37 1.36 ± 0.22 1.38 ± 0.39

volBrain 0.97 ± 0.18 1.52 ± 0.32 1.47 ± 0.30 0.98 ± 0.19 1.32 ± 0.17 1.27 ± 0.21

AdaPro 0.86 ± 0.11 0.92 ± 0.11 0.90 ± 0.12 0.96 ± 0.19 1.17 ± 0.19 1.13 ± 0.30

(p = 0.098) (p < 0.001) (p < 0.001) (p < 0.001) (p < 0.001) (p = 0.013)

SOSM-S 0.97 ± 0.10 1.07 ± 0.11 1.14 ± 0.12 0.96 ± 0.13 1.24 ± 0.20 1.22 ± 0.22

MALF 0.79 ± 0.25 0.87 ± 0.09 0.86 ± 0.11 0.86 ± 0.30 1.01 ± 0.11 1.04 ± 0.19

volBrain 1.00 ± 0.21 1.46 ± 0.33 1.40 ± 0.30 1.01 ± 0.23 1.43 ± 0.24 1.41 ± 0.28

AdaPro 0.83 ± 0.15 0.86 ± 0.12 0.85 ± 0.11 0.86 ± 0.16 0.90 ± 0.13 0.90 ± 0.20

(p = 0.001) (p < 0.001) (p < 0.001) (p = 0.070) (p < 0.001) (p < 0.001)na
tiv
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Table 2: Comparison of ASSD (mm) for the Cerebellum (C), Right Hemisphere (RH), and
Left Hemisphere (LH) of the pre- and post-operative images of 3T. Lower ASSD
means better accuracy (bold scores are the best with statistical signi�cance). Re-
sulting p-values from ANOVA test are in parenthesis.

Epilepsy Datasets (Group B) - ASSD

PRE-3T POST-3T

C RH LH C RH LH
SOSM-S 0.91 ± 0.22 1.04 ± 0.14 1.02 ± 0.13 0.90 ± 0.19 1.28 ± 0.20 1.25 ± 0.18

MALF 1.02 ± 0.31 1.07 ± 0.18 1.06 ± 0.17 1.00 ± 0.28 1.30 ± 0.16 1.25 ± 0.20

volBrain 1.02 ± 0.08 1.42 ± 0.11 1.36 ± 0.10 1.01 ± 0.09 1.51 ± 0.14 1.47 ± 0.13

AdaPro 0.75 ± 0.07 1.03 ± 0.18 1.01 ± 0.14 0.75 ± 0.09 1.08 ± 0.18 1.10 ± 0.18

(p < 0.001) (p < 0.001) (p < 0.001) (p < 0.001) (p < 0.001) (p < 0.001)

SOSM-S 0.97 ± 0.26 1.16 ± 0.17 1.15 ± 0.16 0.94 ± 0.19 1.29 ± 0.29 1.26 ± 0.24

MALF 1.05 ± 0.40 1.14 ± 0.23 1.12 ± 0.23 1.01 ± 0.38 1.24 ± 0.26 1.18 ± 0.26

volBrain 1.06 ± 0.09 1.44 ± 0.16 1.42 ± 0.16 1.05 ± 0.11 1.56 ± 0.16 1.55 ± 0.17

AdaPro 0.68 ± 0.09 0.94 ± 0.16 0.94 ± 0.13 0.67 ± 0.10 0.99 ± 0.19 1.02 ± 0.17

(p < 0.001) (p < 0.001) (p < 0.001) (p < 0.001) (p < 0.001) (p < 0.001)na
tiv
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in the temporal lobes, where a portion has been removed. Their ASSD scores in
the cerebellum are similar for pre- and post-operative images because it is the only
object that remains intact after resection surgery.
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Table 3: Comparison of Dice for the Cerebellum (C), Right Hemisphere (RH), and Left Hemi-
sphere (LH) of the pre- and post-operative images of 2T. Higher Dice means better
accuracy (bold scores are the best with statistical signi�cance). Resulting p-values
from ANOVA test are in parenthesis.

Epilepsy Datasets (Group A) - Dice

PRE-2T POST-2T

C RH LH C RH LH
SOSM-S 0.944 ± 0.006 0.961 ± 0.005 0.957 ± 0.006 0.949 ± 0.013 0.952 ± 0.008 0.951 ± 0.014

MALF 0.953 ± 0.011 0.969 ± 0.002 0.966 ± 0.004 0.930 ± 0.025 0.951 ± 0.008 0.948 ± 0.015

volBrain 0.943 ± 0.014 0.955 ± 0.009 0.954 ± 0.009 0.935 ± 0.026 0.949 ± 0.010 0.951 ± 0.015

AdaPro 0.949 ± 0.008 0.967 ± 0.004 0.966 ± 0.004 0.940 ± 0.015 0.954 ± 0.008 0.953 ± 0.013

(p = 0.012) (p < 0.001) (p < 0.001) (p = 0.039) (p = 0.452) (p = 0.726)

SOSM-S 0.933 ± 0.014 0.955 ± 0.004 0.952 ± 0.006 0.935 ± 0.017 0.949 ± 0.009 0.946 ± 0.012

MALF 0.951 ± 0.021 0.971 ± 0.003 0.969 ± 0.004 0.950 ± 0.027 0.965 ± 0.008 0.961 ± 0.012

volBrain 0.941 ± 0.020 0.960 ± 0.009 0.959 ± 0.009 0.940 ± 0.022 0.957 ± 0.008 0.956 ± 0.010

AdaPro 0.948 ± 0.015 0.969 ± 0.005 0.969 ± 0.004 0.947 ± 0.016 0.966 ± 0.006 0.963 ± 0.010

(p = 0.015) (p < 0.001) (p < 0.001) (p = 0.124) (p < 0.001) (p < 0.001)na
tiv
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Table 4: Comparison of Dice for the Cerebellum (C), Right Hemisphere (RH), and Left Hemi-
sphere (LH) of the pre- and post-operative images of 3T. Higher Dice means better
accuracy (bold scores are the best with statistical signi�cance). Resulting p-values
from ANOVA test are in parenthesis.

Epilepsy Datasets (Group B) - Dice

PRE-3T POST-3T

C RH LH C RH LH
SOSM-S 0.941 ± 0.016 0.953 ± 0.007 0.952 ± 0.007 0.942 ± 0.015 0.947 ± 0.013 0.947 ± 0.011

MALF 0.939 ± 0.021 0.956 ± 0.007 0.954 ± 0.007 0.940 ± 0.020 0.949 ± 0.011 0.950 ± 0.010

volBrain 0.930 ± 0.013 0.937 ± 0.009 0.939 ± 0.008 0.932 ± 0.012 0.939 ± 0.009 0.938 ± 0.008

AdaPro 0.952 ± 0.008 0.955 ± 0.007 0.955 ± 0.005 0.952 ± 0.008 0.956 ± 0.006 0.954 ± 0.006

(p < 0.001) (p < 0.001) (p < 0.001) (p < 0.001) (p < 0.001) (p < 0.001)

SOSM-S 0.931 ± 0.027 0.941 ± 0.010 0.941 ± 0.009 0.934 ± 0.022 0.936 ± 0.015 0.937 ± 0.013

MALF 0.935 ± 0.034 0.952 ± 0.010 0.951 ± 0.011 0.938 ± 0.032 0.946 ± 0.013 0.947 ± 0.014

volBrain 0.928 ± 0.016 0.936 ± 0.008 0.936 ± 0.008 0.931 ± 0.017 0.936 ± 0.009 0.936 ± 0.009

AdaPro 0.956 ± 0.013 0.956 ± 0.007 0.954 ± 0.007 0.958 ± 0.011 0.956 ± 0.007 0.954 ± 0.008

(p < 0.001) (p < 0.001) (p < 0.001) (p < 0.001) (p < 0.001) (p < 0.001)na
tiv
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Since CSF �lls the removed portions in the temporal lobes after surgery, vol-
Brain can correctly identify them during segmentation due to its tissue classi�ca-
tion that separates voxels of WM, GM, and CSF. However, its ASSD is higher than
the other baselines because it also misclassi�es several GM voxels from the hemi-
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PRE-2T

SOSM-S

0

1

POST-2T

PRE-3T

POST-3T

MALF AdaProvolBrain

Figure 3.9: Axial and coronal slices with themean segmentation errors from the baselines (0
means no error, and 1 means errors in all images) on template coordinate space
for the entire datasets.
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spheres as CSF, resulting in more segmentation errors (Fig. 3.9). Its preprocessing
probably was not able to guarantee the same range of values for the tissues of the
testing images, resulting in misclassi�cation.

In contrast, AdaPro’s classi�cation can detect the anomalies without missing
object voxels in the brain hemispheres and cerebellum. Its preprocessing opera-
tions are fundamental for that since it is responsible for ensuring that all voxels of
the same tissue will have intensities within the same range. Moreover, the relax-
ation process on its delineated objects results in smoother and well-de�ned object
boundaries, thus avoiding an e�ect of serrated borders. The texture classi�cation
and delineation perform better in 3T images due to their higher quality when com-
pared to 2T images. Consequently, the segmentation results are better in images
of 3T than 2T.

Regarding the ASSD scores, AdaPro is more accurate than the baselines in the
post-operative images for the hemispheres (Fig. 3.9) – objects a�ected by surgical
procedures – and for the pre-operative images of 3T. AdaPro is equivalent toMALF
for PRE-2T and the cerebellum in POST-2T. We have evidence, based on the p-
values provided by the ANOVA test, that the mean scores of AdaPro di�er from
the baselines (see the bold scores in the Tables 1–4).

Conversely, all evaluated methods present similar Dice scores in most scenarios,
even for post-operative images. AdaPro presents equivalent results compared to
the baselines for 2T images and the PRE-3T dataset, being superior for 3T images
in the native image space. Dice is not sensitive to capture local segmentation errors,
such as the regions surgically removed in the temporal lobes (Fig. 3.8). It is also
sensitive to the size of the object — di�erences in Dice values for small objects
are less signi�cant than the same values for large objects. Therefore, we prefer to
draw conclusions based on ASSD than on Dice.

volBrain’s segmentation is performed on its own online platform and takes
around 12 minutes. It is also limited to 10 free executions per day. SOSM-S takes
around 110 seconds (50 seconds for registration and 60 seconds for object delin-
eation). MALF is the slowest approach with about 16 minutes for segmentation in
native space and 3 minutes in the template space. AdaPro is the fastest approach
with around 90 seconds to complete its entire pipeline in any coordinate space,
which includes 20 seconds for preprocessing, 50 seconds for registration and his-
togram matching, 15 seconds for texture classi�cation, and 5 seconds for object
delineation, respectively.

3.5 ����������

In this chapter, we presented a fast and e�ective solution, named AdaPro, for the
automated segmentation of brain structures in anomalous 3D MR images. AdaPro
was used to delineate the brain hemispheres and cerebellum in 3D MR-T1 images
of 2T and 3T from epilepsy patients before and after temporal lobe resections,
being statistically more accurate and considerably more e�cient than three atlas-
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based methods, SOSM-S, MALF, and volBrain. Moreover, it can segment new im-
ages in the template and native image spaces.
Future work may extend AdaPro to other organs and imaging modalities, as

well as evaluate other tissue classi�cation for other di�erent anomalies. Another
worthwhile goal is investigating other preprocessing techniques to use a single
version of AdaPro on 3D MR-T1 images regardless of the �eld strength.

We initially designed AdaPro to support collaborating neurologists to estimate
morphological metrics for the cerebellum and brain hemispheres. The primary
neurologists’ interest was to study how these structures change in volume and
shape in epilepsy patients after temporal lobe resection. Consequently, the brain-
stemwas ignored during the creation of gold-standard segmentation of the consid-
ered in-house datasets, which made its evaluation impossible. However, we pos-
teriorly obtained a new subset of MR-T1 of healthy images with gold-standard
segmentation that also included the brainstem, which made it possible to extend
AdaPro to segment all macro brain structures, as described in the next chapters.
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4DETECT ION OF ABNORMAL H I P POCAMPAL ASYMMETR I E S

Although many brain regions present normal brain asymmetries, studies have
shown that some neurological diseases — such as Alzheimer’s [24], schizophre-
nia [25, 26], and epilepsy [27–29] — are associated to abnormal brain asymmetries
(Fig. 1.2). Morphological changes in (sub)cortical structures in one or both hemi-
spheres characterize such asymmetries. Detecting these abnormalities inMR brain
images is useful, for example, to support neurologists during medical diagnosis,
as well as to investigate structural changes in brain tissues after surgical proce-
dures [29].
Most image analysis methods rely on the segmentation of target structures

of interest (e.g., hippocampus) to quantify variations in shape, size, and tex-
ture [33, 185]. One can interactively segment these structures — which is error-
prone and time-consuming — or rely on an automated segmentation tool, such
as FreeSurfer [144] and volBrain [80] (Section 3.1). However, segmentation errors
may severely a�ect the reliability of the computed morphometric measures and,
consequently, the asymmetry analysis (Fig. 4.1).

ground truth

predicted segmentation

Figure 4.1: Sagittal slice with an example of segmentation errors in the left hippocampus.
The border (blue) of the object segmented by volBrain [80] is larger than the
border (red) of the ground truth.

Other methods train a discriminative model (supervised learning) to classify
the entire image or a volume of interest (VOI), for example, as healthy or abnor-
mal [186–190]. The VOI analysis is more attractive for anomaly detection due to
its �exibility in de�ning VOIs in any region of the brain, especially in those where
there are no available segmentation tools. However, these methods typically re-

This chapter is based on the publication:
S. B.Martins, B. C. Benato, B. F. Silva, C. L. Yasuda, andA. X. Falcão, “Modeling normal brain asymmetry
inMR images applied to anomaly detectionwithout segmentation and data annotation,” in SPIEMedical
Imaging, vol. 10950, pp. 71–80, 2019.
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quire a considerable e�ort from experts to annotate a reasonable number of exam-
ples (images or VOIs), which are then used to train discriminative models. More-
over, the models are speci�c for the anomalies related to the disease(s) present in
the training set.

In this chapter, we propose (i) an unsupervised framework to model normal
brain asymmetries from healthy subjects — which explores the MR image analysis
of corresponding VOIs in the left and right hemispheres — and (ii) the use of the
model to detect abnormal asymmetries. As proof of concept, we instantiate the
framework for the detection of abnormal hippocampal asymmetries from epilepsy
patients. Then, we extend this framework for the entire hemispheres.

Our approach starts localizing VOIs around structures of interest. These VOIs
may be de�ned as 3D bounding boxes from segmentation, whenever they are avail-
able. However, we propose a fast and accurate 3D patch-based model for VOI lo-
calization in new images. Next, a generative deep neural network — a convolutional
autoencoder (CAE) [191, 192] — is used to learn the image transformation from
the left VOI to the �ipped right VOI and vice-versa. We concatenate the outputs
of the intermediate layers from CAE to form each observation (feature vector) of
a normal structural asymmetry. Finally, we train a one-class classi�er (OCC) to de-
tect outliers as abnormal asymmetries. Our method localizes the corresponding
VOIs in both hemispheres of a given a test brain image, extracts image features by
CAE, and uses OCC to determine if the VOI pair represents normal or abnormal
asymmetries.

We organize the chapter as follows. Section 4.1 brie�y provides an overview of
autoencoders. Section 4.2 details our proposed unsupervised approach. Section 4.3
presents the experiments and results for abnormal hippocampal asymmetry de-
tection. Section 4.4 extends the proposed framework for abnormal asymmetry de-
tection in the entire hemispheres, as well as it presents preliminary qualitative
experiments. Section 4.5 summarizes our �ndings and suggests future work.

4.1 ������������

Autoencoders (AE)s are unsupervised neural networks (also called generative neu-
ral networks) designed to reconstruct input data while compressing it in a low-
dimensionality representation (latent space) [193]. AEs are based on the encoder-
decoder paradigm [194]. The encoder stage transforms the high-dimensional in-
put data into a latent low-dimensional representation (code). The decoder stage
reconstructs the input data to the original space from the code. Thereby, the data
is represented faithfully, but with removal of redundancies. Fig. 4.2 presents the
general structure of an autoencoder.

To formulate an AE model, let x = {x1, x2, · · · , xm} be an unlabeled high-
dimensional training set, wherem is the number of samples, and xi 2 RN is the
i-th N -dimensional sample. The simplest autoencoder architecture consists of a
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Figure 4.2: General structure of an autoencoder.

fully-connected feedforward neural network with a single hidden layer. AEs �rst
map x to the latent space z (encoder) by using the encoding function, given by

z = f� (x) = wx + b, (4.1)

where � = {w,b},w are the encoding-layer weights,b is the bias, and z 2 Rd is the
low-dimensional latent representation (code) of x, d ⌧ N . This code is then used
to reconstruct the input data (decoder) by a decoding function, given by

x0 = �� (z) = w 0z + b 0, (4.2)

where � = {w 0,b 0},w 0 are the decoding-layer weights, b 0 is the bias, and x0 2 RN is
the resulting reconstruction of x from decoding z. Putting together both equations:

x0 = �� (f� (x)). (4.3)

The training of AEs consists of optimizing the parameters (� ,�) by minimizing
the reconstruction errors of the input data, given by

� ⇤,�⇤ = argmin
� ,�

L(x, x0). (4.4)

where L is a given loss function. Cross entropy and mean squared error (Ap-
pendix C.1) are examples of loss functions widely used to train AEs [193].
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Medical image analysis applications typically use AEs for feature extraction [52,
58, 59, 195], image denoising [196], image reconstruction [197, 198]. Most of
these methods rely on Convolutional Autoencoders (CAEs) [192], which extends
the conventional AEs by incorporating convolutional layers [193]. CAEs share
weights among all locations in the input images, preserving spatial locality. Con-
sequently, its reconstruction results from the linear combination of basic image
patches based on the latent code [192].

4.2 �������� ��������

This section presents the steps involved in the creation of a model of normal struc-
tural brain asymmetry and its use for anomaly detection. Fig. 4.3 shows the general
pipeline of our solution. The numbered steps in Fig. 4.3 are henceforth referred to
as Step 1, Step 2, and so on, in the remainder of this chapter.
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Figure 4.3: General pipeline of the proposed autoencoder-based approach to model normal
brain asymmetries (left blue block) and to use that model (right pink block).
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4.2.1 3D Image Preprocessing

The pipeline starts preprocessing the training set with only control images (Step
1) by following the operations described in Section 2.3. We apply noise reduction
by median �ltering, followed by MSP alignment, and an inhomogeneity correc-
tion with N4 [102]. We perform skull-stripping by AdaPro (Chapter 3), followed
by intensity normalization. We consider the same reference image (template) used
by AdaPro (Section 3.2.1), which has 180 ⇥ 240 ⇥ 240 voxels and a voxel size of
1 ⇥ 1 ⇥ 1mm3. We then register all images on this template by non-rigid registra-
tion using Elastix [107]. Finally, we perform intensity normalization to standardize
the brain tissue intensities from the registered training images with the template.
We apply the same preprocessing tasks to the testing images (Step 6).

4.2.2 VOI Localization

A volume of interest (VOI) is a sub-image with reduced background-size around
a given structure under study. The simplest and most used case is a 3D patch,
i.e., an axis-aligned 3D box (parallelepiped). One could �rst segment the structure
by using any automated segmentation tool, such as FreeSurfer [144], to de�ne the
VOI. However, it might be essential to analyze VOIs that do not include any speci�c
object segmented by these available tools [40, 51]. We then propose a patch-based
model (PBM) to localize VOIs without any segmentation, as illustrated in Fig. 4.4.
Firstly, one expert interactively speci�es the left and right VOIs for each training

control image in the reference space by selecting their �rst and last points (Fig. 4.3,
Step 2). Left and right localization models are VOIs of equal sizes, which is de�ned
as follows. For each hemisphere, we compute the minimum bounding box that
covers all its speci�ed VOIs. The largest minimum bounding box de�nes the size
of the localization models (Fig. 4.3, Step 3). The initial location of each model is
the geometric center of its respective VOIs in the training set. The di�erences in
location among the training VOIs de�ne possible translations within a small search
region around the center of each model (Fig. 4.3, Step 3). For a new test 3D image in
the reference space, the method independently searches the translation from the
center of each model, which maximizes the normalized mutual information (NMI)
between the template and test image (Appendix C.1) inside the model (Fig. 4.3,
Step 7).

4.2.3 Normal VOI Asymmetry Representation

We aim at learning one transformation (reconstruction) from the left VOI to the
right VOI, one for each hemisphere, and vice-versa. We �rst �ip the right VOIs
on the mid-sagittal plane to keep the same orientation between the left and right
VOIs (Step 4). The reconstruction takes into account normal asymmetries that may
a�ect any of the sides. The mean squared error between reconstructed and reals

67



��������� �� �������� ����������� �����������

train reg. image #1

train reg. image #2

…

train reg. image #3

overlapped right VOIs localization model M
(for the right VOI)

expert

test reg. image I located VOI on I
(maximum NMI)

Local Search
by NMI

localization model on I

localization model on Ttemplate T

training

automatic VOI localization

search region
min. bounding box 

that covers all VOIs

Figure 4.4: Scheme for the training and use of the proposed patch-based model (PBM) for
VOI localization in 3D brain images. For simplicity, the �gure only considers
VOIs in the right hemisphere.

VOIs expects to be minimum, given that the training VOI pairs represent normal
asymmetries. We propose one convolutional autoencoder (CAE) for each transfor-
mation [192]. From a set of source 3D images, CAE learns to reconstruct a set of
target 3D images by applying a set of linear and non-linear transformations (e.g.,
convolutions, activation, and pooling) to the source 3D images.

Given a training set with N images, we extract the desired �ipped right and left
VOIs (Ri , Li ) for each training image i . The considered source set consists of the
union between the N �ipped right VOIs and the N left VOIs. The target set, in
turn, consists of the union between the N left VOIs and the N �ipped right VOIs,
ensuring that each �ipped right VOI will be reconstructed as its corresponding
left VOI and vice-versa (output from Step 5). Since CAE can reconstruct the de-
sired images from the output of the last layer of their encoders, the concatenation
of those intermediate outputs (latent representation) for the �ipped right and left
VOIs (output from Step 8) forms a suitable feature vector (normal VOI asymmetry
representation).
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Fig. 4.5 shows the considered architecture used for normal hippocampal asym-
metry representation. Each VOI is a multivariate volume with 32 ⇥ 64 ⇥ 32 ⇥ 1
values. CAE contains three 3D convolutional layers with 16, 8, and 8 �lters of
3 ⇥ 3 ⇥ 3 weights each, respectively, followed by ReLU activation [199] and 3D
max-pooling in the encoder, and the corresponding reconstruction operations in
the decoder. Since the input images are normalized within [0, 1], a sigmoid func-
tion is used as activation in the last layer of the decoder, and the output values are
multiplied by 4095 to obtain the reconstructed image. The mean squared error be-
tween reconstructed and expected VOI is minimized by using the nadam gradient
optimizer [200], which is popular in the �eld of deep learning mainly because it
achieves good results fast. The reconstruction reaches errors around 0.0049 in the
training set after 500 epochs.
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Figure 4.5: Architecture of the convolution autoencoder (CAE) used for normal VOI asym-
metry representation.

4.2.4 VOI Classi�cation

The observations (vectors with 2048 features) from the training set lead to a cloud
of points in Rn , n=2048, each one representing a healthy subject. We must then
train a one-class classi�er to detect outliers as abnormal asymmetries. We have
evaluated one-class classi�ers based on Support Vector Machine (OC-SVM) [201]
— due to its e�ciency and robustness in classifying multidimensional data — and a
simple variant of the Optimum-Path Forest clustering (OPF-clustering) [129], pre-
viously presented in Section 2.5. OC-OPF is detailed next.

One-Class OPF Classi�er (OC-OPF)

A typical strategy to design outlier detection methods consists of �rst cluster-
ing a given training dataset so that if an unseen test data sample is far from the
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clusters, from a given de�ned threshold, it is considered an outlier. In this work,
we followed this strategy to design the one-class OPF (OC-OPF), an outlier de-
tection approach based on OPF-clustering (Section 2.5). We chose this clustering
algorithm primarily due to its good results in problems related to brain image
analysis [134].

Recall Z be a training set interpreted as a graph, where each sample s 2 Z is
a node and A a given adjacency that de�nes the arcs between the nodes. Recall
a path �t with terminus t be a sequence hs1, s2, . . . , sm = ti of nodes, such that
(si , si+1) 2 A, i 2 [1,m], and �t = �s · hs, ti be the concatenation of �s and the arc
hs, ti with the two joining instances of s merged into one.
OC-OPF starts clustering Z by de�ning its optimum-path forest, such that each

obtained cluster is an optimum-path tree (as performed by OPF-clustering). We
then remove clusters with a few samples (e.g., 5) to avoid noise in the training set,
which makes the unsupervised classi�cation more conservative — OPF-clustering
does not originally perform this step. Given a new test sample t < Z , the algo-
rithm tries to assign one cluster to t by evaluating the values of the extended
paths �s · hs, ti, 8s 2 Z . OC-OPF then extends OPF-clustering for outlier detection
by considering that:

• If the cost of the found optimum path � ⇤t = � ⇤s · hs, ti is greater than a given
threshold, t is an outlier ; otherwise, it is classi�ed as normal.

Following the formal de�nition of OPF-clustering, as presented in Section 2.5,
this threshold is de�ned by �(s). In this work, we consider that �(s) is the median
distance to the k nearest neighbors of s . Section 4.3 compares OC-OPF and OC-
SVM for detecting abnormal hippocampal asymmetries.

4.3 ����������� ��� �������

This section describes the MR-T1 image datasets, experiments, and results ob-
tained for the evaluation of the automatic abnormal hippocampal asymmetry de-
tection. All computations were performed on the same Intel Core i7-7700 CPU
3.60GHz with 64GB of RAM, and an NVIDIA Titan Xp 12GB.

4.3.1 Datasets

The experiments considered �ve in-house datasets from healthy subjects and
epilepsy patients with abnormal hippocampal asymmetries, as detailed in Ap-
pendix B.1. All images were provided by the Neuroimaging Laboratory (LNI) at
the University of Campinas (UNICAMP), Brazil. Fig. 4.6 shows some examples of
these datasets.

We separated 575 3D MR-T1 brain images of 3T from healthy subjects with
ages between 25 and 65 years old (CONTROLS). All images have a voxel size of
1 ⇥ 1 ⇥ 1mm3 and do not present any structural lesion in any part of the brain.
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Figure 4.6: Coronal slices that show: (a) normal hippocampal asymmetries, (b) left hip-
pocampal atrophy, (c) right hippocampal atrophy, and (d) postoperative hip-
pocampus.

We also considered 3D MR-T1 brain images of 3T, voxel size of 1 ⇥ 1 ⇥ 1mm3,
from epilepsy patients which are divided into four in-house datasets: (PRE) preop-
erative patients with unilateral hippocampal atrophy (47 images); (POST) postop-
erative patients (88 images); (RHA) patients with right hippocampal atrophy (34
images); and (LHA) patients with left hippocampal atrophy (37 images). Therefore,
the experiments involved a total of 781 images.

4.3.2 Localization Model

To validate our patch-based model (PBM) for VOI localization, we separated a sub-
set of 60 control images from CONTROLS and the entire PRE and POST datasets.
A neurologist from LNI has then manually delineated both hippocampi of all these
images, generating the gold-standard segmentation for quantitative validation.
This selection was made to avoid the high user-e�ort and required time to ac-
curately segment both hippocampi in all available images (total of 781 images).
We used 50% of the selected control images for training and the remaining im-

ages from all the three datasets for testing, along 5 random splits of training and
testing sets. For each training control image, the same neurologist has interactively
speci�ed its left and right VOIs (3D patches) around the hippocampi (Fig. 4.4).
These VOIs are then used to train PBM.

We used two baselines for comparison. The �rst one (TEMP) assumes that the
VOIs of the template, as interactively speci�ed, can represent the VOIs of the test
images, since they are all in the standard reference space. The second approach
(SSEG) uses the minimum bounding box around each hippocampus as VOI, after
segmentation by volBrain [80] (Section 3.1).
Table 5 presents the percentage of missed foreground — i.e., the percentage of

voxels from the hippocampi that fall outside the detected VOIs — for each baseline.
The analysis of variance (ANOVA), using the post-hoc Tukey honestly signi�cant
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di�erence (HSD) test, indicates that PBM and SSEG are equivalent for most cases,
being both superior to TEMP (the p-value is 0.05). This result makes sense be-
cause the segmentation by volBrain tends to add background voxels around each
hippocampus. It also proves that the background-size in PBM is reduced, with the
advantage of not depending on segmentation. PBM also presents the best scores
for control images.

Table 5: Percentage of missed foreground (%) of the considered localization approaches for
the Right (RH) and Left Hippocampus (LH) in the considered datasets in 5 ran-
dom splits. Bold values show better scores with statistical signi�cance (Note, for
example, that 0.04 means 0.04% below).

CONTROLS PRE POST

RH TEMP 1.78 ± 0.42 1.25 ± 1.87 1.42 ± 1.63
SSEG 0.11 ± 0.38 0.15 ± 0.32 0.13 ± 0.36
PBM 0.04 ± 0.13 0.11 ± 0.39 0.10 ± 0.45

LH TEMP 2.01 ± 1.82 1.12 ± 1.35 1.94 ± 0.74
SSEG 0.18 ± 0.32 0.07 ± 0.31 0.28 ± 0.38
PBM 0.12 ± 0.25 0.09 ± 0.19 0.14 ± 0.28

4.3.3 Hippocampal Asymmetry Detection

In this section, we evaluate how accurate is the classi�cation of hippocampal asym-
metries of healthy subjects and epilepsy patients. We combined the convolutional-
autoencoder (CAE) representation (Fig. 4.5) with each one-class classi�er (OC-
SVM and OC-OPF), which were trained in the original feature space and the two-
dimensional spaces after non-linear projection by t-SNE [202], a well-popular pro-
jection algorithm widely used in several machine-learning problems.

The reason for considering a projection space in the experiments is that, by
analogy with AEs, t-SNE (or, actually, any other projection method) is a similar
kind of tool that reduces dimensionality. The only di�erences with regards to AEs
are that (i) the latent space is 2D, and (ii) the cost/error functions are quite di�erent
– projections aim to preserve relations between samples, and not the information
encoded in each sample (in the sense of being able to decode the n-D sample from
the low-D one). Besides, according to Rauber et al. [203], the separation among
groups (classes) in the two-dimensional projection space, as created by the t-SNE,
is a strong indication of their separation in the original feature space.

An important aspect of t-SNE is that every execution of the algorithm creates a
distinct projection. Therefore, it can only make sense when there is a set of testing
images to be classi�ed. As an unsupervised technique, the t-SNE algorithm can
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project the training and testing sets with no knowledge of true labels, and then
the one-class classi�er can be trained in the projection space and used to classify
the testing samples.

Experimental Protocol

Initially, we used PBM (Section 4.2.2) to automatically localize both hippocampi
(VOIs) in all datasets (Section 4.3.1). We then used the resulting VOIs for feature
learning, extraction, and the design of the classi�ers. We considered 5 evaluation
splits on CONTROLS by randomly selecting 240 controls images for training, 60
for validation, and the remaining 275 images for testing. We also considered all
other images from epilepsy patients for testing. Finally, we compared our CAE-
based representation with the simple absolute di�erence (ABS-DIFF) between left
and �ipped right VOIs.
Since our framework is unsupervised, we can only count on the training set

of controls images for parameter optimization. Consequently, we optimized the
parameters of each classi�er by grid search aiming at maximizing the detection
scores for these images — i.e., healthy hippocampi classi�ed as normal hippocam-
pal asymmetries. The best parameters found for each case were:

• ABS-DIFF/OC-SVM: kernel = rbf, nu = 0.01, and gamma = 0.007;

• CAE/OC-SVM: kernel = linear, and nu = 0.1;

• ABS-DIFF/OC-OPF: the best k was found within [20, 45];

• CAE/OC-OPF: the best k was found within [15, 45].

Results in the Original Feature Space

Table 6 presents the average detection scores in the original feature space for hip-
pocampal asymmetries. These scores show the percentage of the classi�cation hits
of controls images as normal hippocampal asymmetries and patient images as ab-
normal hippocampal asymmetries.
Although the di�erence between the best scores of ABS-DIFF and CAE is small

for the CONTROLS dataset, CAE-based representation is consistently superior to
ABS-DIFF in all cases. These results con�rm the e�ciency of CAE in providing rep-
resentative features for the addressed problem. The combination CAE/OC-SVM
provides slightly better accuracies than CAE/OC-OPF in most datasets, with no
errors for PRE and POST.

Results in the Two-dimensional Projection Space

To further improve the accuracy of the CAE-based representation, we repeated
the same experiments in the two-dimensional projection spaces created by the t-
SNE algorithm. Each sample is now represented by two features resulting from
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Table 6: Anomaly detection scores (%) in the original feature space for the instances of the
proposed framework. These scores show the percentage of the classi�cation hits
of controls images as normal hippocampal asymmetries and patient images as ab-
normal hippocampal asymmetries.

Original Feature Space

CAE ABS-DIFF
OC-SVM OC-OPF OC-SVM OC-OPF

CONTROLS 86.61 ± 2.30 89.04 ± 2.55 87.45 ± 1.34 86.35 ± 1.13

PRE 100.0 ± 0.00 98.40 ± 2.04 93.62 ± 0.00 61.70 ± 9.67

POST 100.0 ± 0.00 100.0 ± 0.00 22.44 ± 0.57 100.0 ± 0.00

RHA 99.26 ± 1.47 97.06 ± 4.16 94.85 ± 1.47 42.65 ± 5.09

LHA 99.32 ± 1.35 97.30 ± 5.41 94.59 ± 0.00 27.70 ± 8.37

this projection. As a non-linear and unsupervised projection approach, we must
project training and testing sets together to design the classi�ers from the training
samples and use them to label the testing set. This approach is indicated whenever
there is a set of testing images to be tagged.

Table 7 shows the resulting detection scores for the projection space. This strat-
egy has a surprisingly positive impact on the results: the detection scores for con-
trol images have considerably increased (99.72% against 89.04% for the original
space), and there are no classi�cation errors for patient images in both classi�ers.

Table 7: Anomaly detection scores (%) in the projection space for the instances of the pro-
posed framework. These scores show the percentage of the classi�cation hits of
controls images as normal hippocampal asymmetries and patient images as abnor-
mal hippocampal asymmetries.

Projection Space by t-SNE

CAE / OC-SVM CAE / OC-OPF

CONTROLS 96.22 ± 2.72 99.72 ± 0.18

PRE 100.0 ± 0.00 100.0 ± 0.00

POST 100.0 ± 0.00 100.0 ± 0.00

RHA 100.0 ± 0.00 100.0 ± 0.00

LHA 100.0 ± 0.00 100.0 ± 0.00

Since the datasets have di�erent sizes, Table 8 presents the mean values of Co-
hen Kappa for each feature space taking into account all datasets. Results con�rm
that the design of both classi�ers for hippocampal asymmetry detection, based
on the proposed unsupervised framework, is more accurate on the projection
space. Furthermore, the proposed OC-OPF classi�er outperforms OC-SVM in both
spaces.

Finally, to better understand these results and their impact on developing in-
telligent and interactive virtual environments in neuroscience, Fig. 4.7 presents
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Table 8: Cohen Kappa for the considered framework instances with PbM localization.

CAE / OC-SVM CAE / OC-OPF

Original Space 0.846 ± 0.03 0.863 ± 0.02
Projection Space 0.956 ± 0.03 0.995 ± 0.00

a t-SNE projection space from one of the splits. Here, each point consists of hip-
pocampal asymmetries of a given pair of hippocampi (VOI) as extracted by CAE.
By clicking on any sample (point on the plot), the user can see the correspond-
ing slice across the centers of the VOIs. It is also possible to navigate in the image
around that location for inspection and annotation of the anomaly type. From that,
one can train discriminative neural networks to allow the detection of abnormal
brain asymmetries, followed by the identi�cation of their anomaly type.

20 0 20 40

30

20

10

0

10

20

30

t-SNE Projection (EDNN)

CONTROLS (Train)
CONTROLS (Test)
PRE
POST
RHA
LHA

Figure 4.7: The 2D t-SNE projection from the considered datasets for the CAE-based repre-
sentations with PBM localization. The expert can select any observation from
the projection to inspect its image slices (see cropped slices of selected observa-
tions).

Fig. 4.7 shows a clear visual separation between the projected features from
normal hippocampal asymmetries (green circles) and the abnormal cases (orange
marks). Rauber et al. [203] showed that the visual separability of classes in a t-SNE
projection is highly correlated with the ability of a classi�er to separate classes in
the original feature space. Hence, we can conclude that both classes are also well-
separated in the original space, which also con�rms the high detection scores in
this space, as presented in Table 6.
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Note that Fig. 4.7 also highlights a false-positive case — the bottom-right green
circle associated with the bottom cropped slice — i.e., a sample of normal hip-
pocampal asymmetries classi�ed as abnormal. Although this test sample did not
have much impact on the �nal accuracy, its possible use as a training one is prob-
lematic for the design of the one-class classi�ers, leading to worse detection scores.
This impact may be severe for OC-OPF since it does not have any treatment for
noise in the training set. Therefore, OC-OPF deserves further investigation to pre-
vent this scenario.

The computational time to analyze a new image takes in the worst case (with
the slowest methods) around 92 s, which is a proper time for the clinical routine.
This time includes 80 s for preprocessing, 4 s for VOI localization by PBM, 7 s for
t-SNE projection, 0.5 s for feature extraction, and 0.5 s for classi�cation.

4.4 ��������� ��� ����� ��������� ���������

This section presents our �rst attempt to detect abnormal brain asymmetries au-
tomatically. For that, we have extended the proposed unsupervised abnormal hip-
pocampal asymmetry detection for the entire hemispheres, as detailed next.

4.4.1 Proposed Extension

Consider a template T with a pre-de�ned segmentation mask M for its
right hemisphere. We start automatically selecting pairs of VOIs along the
entire hemispheres, as illustrated in Fig. 4.8. We apply a uniform grid-
sampling within M and select the corresponding symmetric voxels in the
left hemisphere according to the mid-sagittal plane of T . This forms the set
C = {(CR1,CL1), (CR2,CL2), · · · , (CRm,CLm)} with m pairs of symmetric voxels,
where (CRi ,CLi ) is the i-th selected voxel in the right and left hemisphere, respec-
tively.

Uniform
Grid-Sampling

Template with the
Right Hemisphere Mask

Selected voxels on the 
Right Hemisphere

Final sampled voxels:C

Flip Voxels
by MSP

pair of symmetric voxels
(CRi, CLi)

Figure 4.8: Uniform grid-sampling used to de�ne the geometric centers of VOIs along the
hemispheres. The dashed red lines in the slices correspond tomid-sagittal planes
(MSPs).
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We consider the voxels of each pair (CRi ,CLi ) 2 C as the initial geometric
centers of the corresponding VOIs whose asymmetries will be analyzed. We then
perform our previous method (Section 4.2) for each of these pairs, independently,
with a simple modi�cation: all VOIs along the hemispheres have the same size so
that the localization model now only consists of a local search within a �xed search
region of 5 ⇥ 5 ⇥ 5. Note that, consequently, this extended methodology analyzes
asymmetries along the entire hemispheres by performing multiple executions of
our previous method, according to the number of pairs selected in C .

4.4.2 Preliminary Experiments

We carried out preliminary experiments to qualitatively evaluate the extended
methodology for brain anomaly detection. We adopted the same network archi-
tecture as illustrated in Fig. 4.5 so that we �xed the size of 32 ⇥ 64 ⇥ 32 for all
VOIs extracted along the hemispheres. We considered the training set of control
images and the template used in Section 4.3, and the one-class classi�er with the
optimized parameters found for the hippocampi.
Fig. 4.9 shows axial slices with resulting detected abnormal asymmetries (VOIs)

for (a) a control image from CONTROLS, (b) a postoperative image from POST,
and (c) a patient image from LHA with a small lesion in the left hemisphere. All
these detected VOIs are, in fact, false positives, i.e., normal asymmetries classi�ed
as abnormal. Note that all of them are close to the hemispheres’ borders, which are
locations typically asymmetric. The control image is supposed not to present any
abnormal asymmetries, whereas the method should detect the anomalies (orange
circles) in the remaining images. By inspecting other slices from these 3D images,
we also found several other false-positive detected VOIs.

(a) Control slice. (b) Postoperative slice. (c) Epilepsy patient slice.

Figure 4.9: Examples of false-positive abnormal asymmetries (red patches) detected by the
proposed method. Axial slice of (a) a control image, (b) a postoperative image
after temporal lobe resection (orange circle), and (c) an epilepsy patient with a
small lesion in the left hemisphere (orange circle). Each patch in one hemisphere
has a corresponding patch in the other hemisphere.
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To better understand the reasons for these false positives, we �rst inspected
the VOIs that cover the anomaly (removed portion) of the postoperative image
of Fig. 4.9b. Fig. 4.10 shows an axial slice with the pair of undetected VOIs (blue
patches) with the highest intersection with the anomaly (orange circle). Since the
anomaly is not entirely inside the VOIs, its asymmetry representation is poor, and,
consequently, the method cannot detect it. Thus, we have a problem: how to es-
timate VOI positions adequately? This task is indeed hard — since anomalies
can be found in di�erent locations in the brain — and widely investigated in the
computer-vision literature [204, 205].

Figure 4.10: Pair of undetected VOIs (blue patches) intersecting an anomalous region (or-
ange circle) of a postoperative image. Note that the anomaly is not entirely
inside the VOIs, which undermines the e�ectiveness of your asymmetry repre-
sentation.

We now inspected the VOIs that cover the small lesion of the epilepsy patient
image of Fig. 4.9c. Although a VOI entirely covers this lesion (Fig. 4.11), the huge
amount of background information within this VOI impairs the asymmetry rep-
resentation of the lesion. In the example of Fig. 4.11, the volume of the anomaly
is only about 5% of its covering VOI volume. Consequently, the asymmetry repre-
sentation is biased for the background, which leads to another problem: how to
estimate VOI sizes e�ectively? Each brain structure and anomaly have di�erent
shapes that demand di�erent VOI sizes, which makes their automatic estimation
challenging.

Given the high complexity of e�ectively de�ning 3D patches, we decided to
use supervoxel segmentation to de�ne volumes of interest for asymmetry analysis.
Supervoxels o�er signi�cant freedom and control on de�ning such asymmetric
volumes. At the same time, their application comes with additional complications
such as algorithmic choices and parameter setting choices. As such, we explore
this approach separately in two dedicated chapters, Chapters 5 and 6.
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Figure 4.11: Pair of undetected VOIs (blue patches) covering a small lesion (orange circle)
of an epilepsy patient image. Although the lesion is completely covered by the
VOI, the huge amount of background information inside the VOI impairs the
lesion asymmetry representation.

4.5 ����������

This chapter presented our �rst solution for addressing the research questions of
the thesis. From a simple interactive speci�cation of a 3D patch around a structure
of interest in training control images, we presented an unsupervised framework
that de�nes (i) the corresponding VOI localization model; (ii) image features based
on a generative deep neural network (convolutional autoencoder) for asymmetry
representation; and (iii) trains a one-class classi�er that corresponds to our normal
brain asymmetry model, thus addressing our �rst research question RQ1. We use
this one-class classi�er to detect outliers as abnormal brain asymmetries, which
addresses our second research question RQ2. Our solution does not need the seg-
mentation of the target structures and data annotation. We also proposed a novel
one-class classi�er based on the Optimum Path Forest algorithm [134].
We �rst instantiated and validated the proposed unsupervised framework to de-

tect abnormal hippocampal asymmetries in MR-T1 3D images of healthy subjects
and epilepsy patients with unilateral hippocampal atrophies. Experimental results
by using the original feature space and a two-dimensional space showed high de-
tection scores and kappa values, especially considering some di�cult cases that
only a trained expert can visually identify.
Next, we extended the framework for the detection of brain asymmetries along

the entire hemispheres. From a set of pairs of VOIs automatically extracted in
the hemispheres by uniform grid-sampling, we performed our initial solution for
each pair. We selected a few control and epilepsy patient images for preliminary
qualitative validation. Experiments show poor results with several false-positive
asymmetries detected for all considered images (Fig. 4.9). The extended approach
did not also detect true abnormal asymmetries caused by lesions. We found two
main reasons for these: (i) 3D patches did not entirely cover anomalies due to
poor localization; (ii) there was a high amount of background information inside
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the 3D patches. The e�ective estimation of VOI localization and size is indeed
challenging and demands further investigation. Therefore, we indicate our pro-
posed framework for the analysis of well-de�ned structures of interest inside the
brain, where one carefully speci�es training 3D patches around these structures.
All these limitations motivated us to use supervoxel segmentation to estimate VOIs
for brain asymmetry detection, as detailed in the next chapter.

For future work, we �rst suggest further investigating the impact of the t-SNE
projection in the design of classi�ers and the extension of the framework to other
well-de�ned brain structures. Second, one should explore faster (and yet robust)
projection algorithms than t-SNE in order to make the asymmetry analysis in
the two-dimensional space feasible for large-scale studies. Third, the proposed ap-
proach could also be evaluated for other organs and/or by using di�erent medical
imaging modalities. Finally, one may develop interactive visual tools to support
the detection, inspection, annotation, and identi�cation of brain anomalies based
on abnormal asymmetries.
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In Chapter 4, we have presented our �rst unsupervised solution for addressing
the research questions of the thesis. This solution models healthy asymmetries be-
tween a pair of 3D patches — volumes of interest (VOIs) — by using a convolutional
autoencoder [192] and a one-class classi�er, detecting outliers as abnormal asym-
metries associated to anomalies. Although this �rst approach was well-succeed in
detecting abnormal hippocampal asymmetries in epilepsy patients, its result for
the remaining regions of the hemispheres was unsatisfactory (Section 4.4.2). Two
main reasons explain these results: (i) 3D patches did not entirely cover anoma-
lies due to poor localization; (ii) there was a high amount of background informa-
tion inside the 3D patches. The e�ective estimation of sizes and localization of 3D
patches are indeed challenging and widely investigated in the computer-vision lit-
erature [204, 205]. An alternative strategy relies on using supervoxel segmentation.
Supervoxels are groups of voxels with similar characteristics resulting from an

oversegmentation of a 3D image or region of interest. They preserve intrinsic im-
age information (e.g., the borders of tissues and lesions) and are used as an al-
ternative to patches to de�ne more meaningful VOIs for computer-vision prob-
lems [135, 136] and some medical image applications [6, 137]. For example, one
can oversegment the hemispheres in multiple supervoxels for brain anomaly de-
tection. Supervoxels overcome the two main problems of 3D patches for our tar-
get problem, as (i) they better �t lesions and tissues to VOIs, and (ii) their voxels
contain minimum heterogeneous information. The irregular shapes of supervox-
els, however, prevent the use of recent deep-learning-based techniques that only
work with regular 2D/3D patches.

This chapter proposes an automatic unsupervised supervoxel-based frame-
work for detecting abnormal asymmetries associated with anomalies in 3D MR
brain images. By having all images registered to the same symmetric template,
the proposed framework, called Supervoxel-based Abnormal Asymmetry Detection
(SAAD), computes asymmetries between hemispheres by using their mid-sagittal

This chapter is based on the following publications:
(i) S. B. Martins, G. Ruppert, F. Reis, C. L. Yasuda, and A. X. Falcão, “A supervoxel-based approach
for unsupervised abnormal asymmetry detection in MR images of the brain,” in IEEE International
Symposium on Biomedical Imaging (ISBI), pp. 882–885, 2019;
(ii) S. B. Martins, A. C. Telea, and A. X. Falcão, “Extending supervoxel-based abnormal brain asymmetry
detection to the native image space,” in IEEE Engineering in Medicine and Biology Society (EMBC), pp.
450–453, 2019;
(iii) S. B. Martins, A. C. Telea, and A. X. Falcão, “Investigating the impact of supervoxel segmentation
for unsupervised abnormal brain asymmetry detection,” Computerized Medical Imaging and Graphics,
vol.85, 101770, 2020.
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plane as reference. It then extracts pairs of symmetric supervoxels from the left
and right hemispheres for each test image, so that each pair generates a one-class
classi�er. This classi�er is next trained on control images of healthy subjects to
�nd supervoxels with abnormal asymmetries. We propose a supervoxel segmenta-
tion method, named SymmISF, based on the Iterative Spanning Forest (ISF) frame-
work [61], to extract symmetrical supervoxels from left and right hemispheres.We
also extend SAAD to perform in the native image space of testing images. Both ver-
sions of SAAD are validated to detect abnormal brain asymmetries in 3D MR-T1
images of stroke patients.

The remaining of this chapter is organized as follows. Section 5.1 shows the
related work of brain anomaly detection/segmentation. Section 5.2 presents Sym-
mISF and SAAD for abnormal brain asymmetry detection on standard image space,
whereas Section 5.3 details experimental protocols, and Section 5.4 discusses the
results. Section 5.5 presents the extension of SAAD for the native image space, as
well as reports experimental results. Finally, Section 5.6 summarizes our contribu-
tions and suggests future work.

5.1 ������� ����

From a certain point of view, automatic brain lesion detection/segmentation meth-
ods can be grouped into �ve classes. From the least to the most versatile, these are
as follows.

5.1.1 Atlas-based Methods

These methods use the a priori knowledge about the object’s shapes in a training
atlas set registered on a standard template, where each atlas consists of a source
3D image and its corresponding 3D label image with the mask of each 3D object of
interest [41, 42, 80]. Directly encode anomaly shape-constraints from an atlas set
and use these models to segment anomalies is not e�ective as they vary greatly
in size, shape, and location [147] (Fig. 1.3). Thus, some atlas-based methods aim
to combine these prior shape-constraints and texture segmentation to precisely
delineate anomalies [147, 206–210].

Some solutions incorporate the prior healthy shape-constraints in a supervised
framework [207–209]. For example, Zijdenbos et al. [207] proposed an automatic
technique for multiple sclerosis segmentation that trained an arti�cial neural net-
work with images from healthy subjects and patients. The input features included
three MRI modalities and three spatial-tissue priors from probabilistic atlases. In
contrast, Prastawa et al. [210] use atlases to detect outliers as anomalies by se-
lecting abnormal tissue samples while estimating healthy ones. They proposed
using the Minimum Covariance Determinant to estimate probability density func-
tions for CSF, WM, and GM using healthy images. Any outlier to this estimation
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is considered an abnormal tissue. The next sections detail more supervised and
unsupervised approaches for anomaly detection/segmentation.
Although atlas methods show impressive segmentation results for healthy tis-

sues [41, 80, 144, 183], their results for anomaly segmentation are still unsatisfac-
tory, especially in the presence of anomalies with arbitrary shapes and locations.

5.1.2 Supervised Learning with Hand-crafted Features

These methods use di�erent classi�ers trained from various hand-crafted image
features (e.g., edge detectors and texture features) to delineate anomalies by clas-
sifying voxels or regions of the target image [6, 37–39]. Such supervised methods
usually do not generalize well for anomalies from di�erent disorders since their
considered features have limited representation capability considering the signi�-
cant variation of the anomalies’ appearances. Moreover, these methods work well
only for detecting anomalies related to diseases present in the training set.
For example, Goetz et al. [37] rely on ExtraTrees classi�ers [211] to classify vox-

els as healthy or tumors. From four di�erentMRImodalities, themethod computes
54 hand-crafted features (e.g., local histograms, and �rst-order statistics) for each
voxel. Soltaninejad et al. [6], in turn, proposed to segment anomalies in FLAIR im-
ages by extracting and classifying superpixels across slices of FLAIR images. The
method extracts several hand-crafted features for each supervoxel, such as intensi-
ties, fractal, and curvature features. This solution is accurate to segment medium
and large anomalies in FLAIR images only, where such lesions are considerably
highlighted. This thesis, however, aims to automatically detect lesions (especially
the small ones) in 3D MR-T1 images.

5.1.3 Discriminative Deep Learning

These techniques have emerged as a powerful alternative to the previous class
of methods, given their ability to learn highly discriminative features for a par-
ticular task. In particular, Convolutional Neural Networks (CNNs) [212] have be-
come a mainstay of the computer vision community due to breakthrough per-
formance in several applications [213] as compared to approaches using hand-
crafted features. Deep learning has gained popularity in medical image analysis
as well [35, 45, 46, 54, 214]. Such methods learn deep feature representations (e.g.,
convolutional features) in a data-driven way without any feature engineering be-
ing required. Nevertheless, deep-learning-based methods have some limitations:

(a) they require a large number of training images that must be previously an-
notated by specialists (e.g., lesion segmentation masks);

(b) they typically require weight �ne-tuning (retraining) when used for a new
set of images due to image variability across scanners and acquisition pro-
tocols;
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(c) they are only designed for the anomalies found in the training set, just as
the supervised methods outlined before;

(d) the success of such methods on new images is limited by the absence of
large, high-quality, annotated training sets for most medical image analysis
problems [11].

5.1.4 Unsupervised Approaches

All the above limitations of supervisedmethodsmotivate research on unsupervised
anomaly detection approaches based on outlier detection [13, 40, 53, 58, 215]. These
methods aim to learn a model from control images of healthy subjects only by
encoding general knowledge or assumptions (priors) from healthy tissues. This
model is next used to guide brain segmentation so that outliers who break such
general priors are considered anomalies [13].

For example, Shen et al. [215] proved that the voxel-intensity-based segmen-
tation and the spatial-location-based tissue distribution (based on a probabilistic
atlas) in the lesions are inconsistent with those in healthy tissues. They use the con-
ventional Fuzzy C-Mean algorithm [216] and probabilistic maps from a template
to quantify such inconsistencies, and then apply a threshold to obtain a binary
lesion segmentation. Juan-Albarracin et al. [78], in turn, propose a more complex
method that uses four di�erent MRI modalities of a given patient to segment the
brain tumors of the BraTS dataset [73]. The method groups all voxels in a few
clusters that are classi�ed as normal or outlier, based on probabilistic maps from
a template.

As unsupervised brain anomaly detection methods do not use labeled samples,
they are less e�ective in detecting lesions from a speci�c disease when compared
to supervised approaches trained from labeled samples for the same disease. For
the same reason, however, unsupervised methods are generic in detecting any
lesions, e.g., coming from multiple diseases, as long as these notably di�er from
healthy training samples. Our proposed methods, presented in the next sections,
aim to combine the pros and cons of unsupervised learning for the detection of
anomalies associated with abnormal brain asymmetries.

5.1.5 Deep Generative Neural Networks

Also known as Encoder-Decoder Neural Networks or autoencoders (AEs; Sec-
tion 4.1), these methods have been used for unsupervised anomaly detection by
modeling the distribution of healthy brain tissues and next detecting anomalies
as outliers. The underlying hypothesis is that this model can reconstruct normal
brain anatomies while failing to reconstruct anomalies in images with some dis-
order. AEs learn to reconstruct training images from healthy individuals only by
�rst compressing (encoding) them into a low-dimensional representation (latent
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features) and then decompressing that representation to minimize the reconstruc-
tion error between the input data and its reconstruction.
Some methods [53, 58, 59, 217, 218] delineate anomalies by thresholding the

resulting reconstruction errors, i.e., the residual image between the input image
and its reconstruction. Baur et al. [53] determine as threshold a given percentile of
the reconstruction errors on the training control images. Chen et al. [59] evaluate
di�erent AEs for the reconstruction of MR-T1 and T2 images, but they do not
detail how they choose the thresholds. Other AE-based methods [52] train a one-
class classi�er from latent features to classify if an image (or region of interest)
has some anomaly [52]. Although all these methods can detect large lesions in
MR-T2, FLAIR, and CT [53, 58, 59], they show inferior results in MR-T1 images
and completely fail with small lesions, which are the most challenging cases. In
Section 5.4, we compare our proposed solution in the standard image space with
an AE-based approach derived from Baur et al. [53] and Chen et al. [59].

5.2 ����������� �� ����

We next describe the SAAD method (Fig. 5.1) for abnormal brain asymmetry anal-
ysis in the standard image space (SIS), i.e., the coordinate space of a template. SIS
is chosen when considering a group of reference images from healthy subjects
and/or patients for comparison during the analysis. All images are registered in
the same coordinate, ensuring spatial correlation (position and shape) among same
structures of interest across all images.
SAAD consists of four steps: 3D image preprocessing, asymmetry computation,

supervoxel segmentation, and classi�cation, described next.

5.2.1 3D Image Preprocessing

The pipeline �rst preprocesses the training control image set and the test image
(Steps 1 and 4) to improve image quality for subsequent analysis. Fig. 5.2 illus-
trates the preprocessing results for a given stroke 3D image. We follow the same
preprocessing steps presented in Section 2.3, summarized as follows.
For each 3D image (Fig. 5.2a), we start performing noise reduction by median

�ltering, followed by MSP alignment and bias �eld correction by N4 [102]. As vox-
els from irrelevant tissues/organs for the addressed problem (e.g., neck and bones)
can negatively impact the image registration and intensity normalization, we use
AdaPro (Section 3.2) to segment our macro-regions of interest: right and left hemi-
spheres, cerebellum, and brainstem (Fig. 5.2b). To correctly estimate asymmetries
from anomalies, we ignore the tissue classi�cation step of AdaPro, so that anoma-
lies and typically dark tissues (e.g., CSF) are now also considered during analysis.
To attenuate di�erences in brightness and contrast among images, we perform

intensity normalization by �rst linearly mapping all intensities within [0, 4095] fol-
lowed by a histogram matching between the segmented images and the template
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Figure 5.1: The pipeline of SAAD. Steps 1 to 3 (blue part) are performed o�ine. Steps 4 to
8 (pink part) are computed for each 3D test image (detection stage). The output
images from Steps 3, 5, 6, and 8 are visualized as a symmetrical image. However,
the method can consider just one hemisphere.

(a) (b) (c) (d) (e)

Figure 5.2: 3D image preprocessing and registration steps. (a)Axial slice of a raw test 3D im-
age. The dashed line shows its mid-sagittal plane (MSP) and the arrow indicates
a stroke lesion. (b) Test image after noise �ltering, MSP alignment, bias �eld cor-
rection, and brain segmentation. (c) Axial slice of the symmetric brain template
(reference image). (d) Histogram matching between (b) and the template (inten-
sity normalization). (e) Final preprocessed image after non-rigid registration and
histogram matching with the template.

inside its prede�ned brain segmentation mask (Figs. 5.2c–d). This operation only
considers voxels inside the brain.

We perform non-rigid registration to place all images in the coordinate space
of the ICBM 2009c Nonlinear Symmetric template [108], popularly known as MNI,
whose hemisphere masks and MSP are well de�ned. We rely on Elastix [107] to
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perform all registrations.1 Finally, we apply another histogram matching between
the registered images and the template, and we use the brain segmentation mask
from the template and its MSP to separate the left and right brain hemispheres in
each image for further asymmetry computation (Fig. 5.2e).

5.2.2 Asymmetry Computation

Let X be the set of registered training 3D images (output of Step 1) and I the test
3D image after preprocessing (output of Step 4). We obtain the set of asymmetry
maps AX for all X by computing the voxel-wise absolute di�erences between left
and right hemispheres with respect to the template’s MSP (Step 2). One might
argue on estimating the MSP of each registered image, separately. However, we
con�rmed that, when mapping all images to the same symmetric template by non-
rigid registration, each registered image’s MSP was either exactly or slightly tilted
from the template’s MSP, which does not impact the asymmetry computation.
Next, we create a normal asymmetry map AX (Step 3) by averaging the absolute

di�erence values ofAX (Fig. 5.3a). We use this map to reduce the detection of false-
positive asymmetries in I in commonly asymmetric brain regions (e.g., cortex), as
detailed next in Section 5.3. Finally, we compute voxel-wise absolute di�erences
between the hemispheres for I (Figs. 5.3b–c) and then subtract AX from them.
Resulting positive values form a �nal asymmetry map AI (Fig. 5.3d) for the test
image I (Step 5).

(a) (b) (c) (d)

Figure 5.3: Asymmetry computation on a standard image space. (a) Axial slice of the nor-
mal asymmetry map for healthy subjects. (b) Axial slice of a 3D test stroke im-
age after preprocessing and non-rigid registration on a symmetric template. (c)
Asymmetries of (b) by computing voxel-wise absolute di�erences between the
hemispheres with respect to its MSP. (d) Final attenuated asymmetries: positive
values of the subtraction between (c) and (a).

1 We used the par0000 �les available at http://elastix.bigr.nl/wiki/index.php/Parameter_
file_database
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5.2.3 Symmetric Supervoxel Segmentation

Directly comparing the �ipped, segmented, and registered hemispheres is not help-
ful as it will not tell us where small-scale asymmetries occur. At the other extreme,
comparing every voxel pair in these hemispheres is risky, since individual voxels
contain too little information to capture asymmetries. These di�culties motivate
the use of supervoxels as the unit of comparison (Step 6).

An ideal supervoxel segmentation should create precisely one supervoxel per
anomaly. This case is, of course, highly unlikely to succeed, given the high vari-
ability of size, shape, and position of anomalies (Fig. 1.3). At any rate, too small
supervoxels should be avoided as they oversegment larger anomalies and thus can-
not capture their essence, and also will confuse the end-users when visually ex-
ploring the results. Too large supervoxels, in contrast, should be avoided as they
cannot precisely delineate small-scale anomalies from the background (underseg-
mentation).

We propose a new method, named SymmISF, that extracts symmetrical super-
voxels from left and right brain hemispheres simultaneously. SymmISF is based
on the recent Iterative Spanning Forest (ISF) framework [61] (Section 2.6) for su-
perpixel segmentation and has three steps: (i) seed sampling followed by multiple
iterations of (ii) connected supervoxel delineation, and (iii) seed recomputation to
improve delineation (Fig. 5.4), as follows.

As outlined in Section 2.6, initial seed estimation is a crucial step for the success
of ISF. The adopted strategy for that, however, depends on the addressed problem,
which, in turn, may have speci�c constraints. For the problem of this chapter, the
simplest approach to �nd initial seeds is to select N seeds uniformly distributed
in the right hemisphere de�ned by a segmentation mask for the template. We call
this strategy Uniform SymmISF next. However, there are no guarantees that this
strategy will place at least one seed within each asymmetric anomaly, so this can
easily lead to undersegmentation. We then propose a new strategy, called next
Asymmetry-guided SymmISF, that is guided by the hemispheric asymmetries of
the image when selecting one seed per local maximum in AI (see the asymmetry-
guided seeds in Fig. 5.4). It computes the local maxima of the foreground of a
binarized AI at � ⇥ � , where � is Otsu’s threshold [219]. The higher the factor �
is, the lower is the number of asymmetric components in the binarized AI . This
seed-set is next extended with a �xed number of seeds (e.g., 100) by uniform grid
sampling the low-asymmetry regions of the binarized image. A detailed compari-
son of Uniform SymmISF with Asymmetry-guided SymmISF is presented next in
Section 5.4.

As the cortex is typically very asymmetric, we can still remove seeds placed very
close to the hemisphere borders to reduce the number of false positives in such
regions and also to weigh the normal asymmetry map to attenuate other asymme-
tries further. Both strategies are evaluated and discussed in detail in Section 5.4.
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Figure 5.4: The pipeline of SymmISFwith two possible initial seed estimation strategies (red
points represent seeds). The method �ips the input test 3D image (volume) by
using its MSP and builds a 2-band volume by stacking both volumes. Then, the
ISF framework [61] estimates supervoxels inside the hemisphere mask from the
initial seeds. The resulting label map is �ipped to form the �nal label map with
pairs of symmetrical supervoxels.

By stacking the right hemisphere with the left hemisphere — �ipped using the
MSP — as the input 2-band volume (Fig. 5.4), SymmISF applies ISF only inside the
right hemisphere from the initial seeds. ISF relies on a cost function controlled by
two parameters: � and � (Section 2.6.1). This process yields a label map in which
each supervoxel is given a distinct label. Finally, SymmISF �ips these supervoxels
to obtain the symmetrical supervoxels in the left hemisphere, which yields the
�nal label map L (output of Step 6). Note that one can proceed conversely, i.e., apply
SymmISF on the left hemisphere, and map the result to the right hemisphere.

5.2.4 Feature Extraction and Classi�cation

SAAD presents a novel approach for outlier detection (Section 1.3.1) — here in-
stantiated for abnormal asymmetry detection — that designs a set of specialized
one-class classi�ers (OCCs) speci�c for each test 3D image, as shown in Fig. 5.5.
For each 3D test image, each pair of symmetrical supervoxels is used to create a
specialized one-class classi�er (OCC) using as feature vector the normalized his-
togram of the asymmetry values inside the pair (Step 7). Classi�ers are trained
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from control images only, thus locally modeling normal asymmetries for the en-
tire hemispheres. Finally, SAAD uses the trained OCCs to �nd supervoxels with
abnormal asymmetries in the corresponding testing image (Step 8). Fig. 5.6 illus-
trates the supervoxel classi�cation.

By default, SAAD yields pairs of symmetric supervoxels corresponding to the
detected abnormal asymmetries. This output is useful for subsequent visual anal-
ysis as an expert can compare such regions in both hemispheres as well as their
computed asymmetries. To output only the supervoxel that covers the detected
asymmetric anomaly, one may simply compute the similarity from the test image
with the template inside each supervoxel of the pair. The less similar supervoxel
contains the anomaly.

test symmetrical
supervoxels

for each pair of 
symm. supervoxels

………

histogram of asymmetries
within the pair of

symm. supervoxels

Feature
Extraction

OCC for pair #1

Train
Asymmetry Maps

Feature
Extraction

OCC for pair #2

Train
Asymmetry Maps

OCC training

#1

#2

Figure 5.5: One-class classi�er (OCC) training for abnormal asymmetry detection. For each
pair of symmetric supervoxels from a given test 3D image, SAAD trains an OCC
from the training normal asymmetry maps previously computed.)

When dynamically designing specialized one-class per-supervoxel classi�ers
for each test image, SAAD implicitly considers the position of the supervoxels in
the hemispheres when deciding upon their asymmetry. The central premise for
this is that a single global classi�er cannot separate normal and anomalous tissues
by only using texture features. Experimental results concerning this hypothesis
are presented in Section 5.4.3.

Even though the proposed classi�cation scheme demands a higher processing
time compared to using a single global classi�er trained o�ine, this time is not too
high (⇡ 2 min) and still feasible for clinical purposes as SAAD relies on a simple
and fast feature extraction (histogram) and the one-class linear Support Vector
Machine [201]. More details are presented in Section 5.4.
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Figure 5.6: Abnormal asymmetry detection of a test 3D image by supervoxel classi�cation.
For each pair of symmetrical supervoxels, SAAD uses the corresponding one-
class classi�er to classify the asymmetries inside the pair.

5.3 �����������

SAAD claims that the combination of supervoxels as volumes of interest and spe-
cialized one-class per-supervoxel classi�ers is a better option for outlier detection.
This assumption leads to two key questions for abnormal asymmetry detection:

(i) What is the impact of supervoxel segmentation in SAAD for the quality of
the abnormal asymmetry detection?

(ii) Why use a specialized one-class classi�er for each supervoxel instead of a
global classi�er?

To evaluate SAAD and answer these questions, we performed a detailed eval-
uation of di�erent scenarios for supervoxel segmentation and classi�cation for
the automatic detection of abnormal asymmetries in 3D MR-T1 brain images. We
chose a public and challenging dataset with 3D brain images of stroke patients
with a variety of strokes in terms of shape, size, location, and texture. Each im-
age has a segmentation mask with its stroke. Although di�erent automatic meth-
ods for lesion detection/segmentation exist (Section 5.1), most of them typically
capture only speci�c lesions. They also require multiple imaging modalities or a
considered number of segmented images for training (especially for MR-T1 brain
images), which is particularly rare for most applications on medical image analy-
sis. Moreover, details, available tools, and trained models for most of these meth-
ods are absent, which makes their comparison di�cult. In contrast, our method
aims to detect any kind of (asymmetric) lesion. We then considered as baselines
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for SAAD the state-of-the-art unsupervised method (like ours) for the considered
stroke image dataset.

This section describes the setup of the entire experiments. We detail the MR-T1
image datasets (Section 5.3.1), followed by the evaluation protocol (Section 5.3.2),
including the compared methods and quantitative metrics.

5.3.1 Datasets

To answer our key questions, we need datasets with volumetric MR-T1 brain im-
ages (i) from healthy subjects (for training), and (ii) with hemispheric asymmetric
lesions of di�erent sizes (especially small ones) and their segmentation masks. For
this, we �rst considered the CamCan dataset [220], which has 653 3D MR-T1 im-
ages of 3T from healthy men and women between 18 and 88 years. For each 3D
MR-T1 image, CamCan also has a corresponding 3D MR-T2 image, which we do
not use in the experiments. To our knowledge, CamCan is the largest public dataset
with 3D images of healthy subjects acquired from di�erent scanners. We visually
inspected all MR-T1 images and removed images with bad acquisition or artifacts,
yielding 524 images.

Public datasets with di�erent brain lesions exist. However, some only provide
a subset of 2D slices for each image or interpolate slices to build a volume (e.g.,
BraTS [73]); others provide 3D images with only very symmetric lesions (e.g.,
MSSEG [221]). Given these limitations, we settled on using the Anatomical Trac-
ings of Lesions After Stroke (ATLAS) public dataset release 1.2 [34] in our experi-
ments.

ATLAS is a rather challenging dataset with a large variety of manually anno-
tated lesions and images acquired from di�erent scanners. It contains lesions rang-
ing from very small to large ones, located in several parts of the brain (see Fig. 1.3
for examples). All images have a mask with the primary stroke lesion. Some im-
ages also have additional masks with other stroke lesions. Current state-of-the-art
segmentation results for ATLAS are inaccurate yet [59, 214]. We are not a�ected
by this problem since we aim to detect, and not segment, the lesions.

Since SAAD is designed to detect abnormal hemispheric asymmetries and the
considered training images have a 3T �eld strength, we selected all 3T images
from ATLAS, which contain only lesions in the hemispheres (total of 229 images).
All images were registered into the coordinate space of ICBM 2009c Nonlinear
Symmetric template [108] and preprocessed as outlined in Section 5.2.1 (see an
example in Fig. 5.2).

5.3.2 Evaluation Protocol

Baselines: In the absence of details, available tools, and trained models for
automatic anomaly detection, we compared SAAD against the convolutional-
autoencoder-based approach (CAE) from Chen et al. [59] (Section 5.1.5), which is,
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as far as we know, the current state-of-the-art unsupervised method for the ATLAS
dataset. We refer to Section 4.1 for details about autoencoders.
We considered the 2D axial slices of all preprocessed training images to train

CAE, which has the following architecture: three 2D convolutional layers with
16, 8, and 8 �lters of patch size 3 ⇥ 3, respectively, followed by ReLU activation
and 2D max-pooling in the encoder, and the corresponding operations in the
decoder. The nadam gradient optimizer minimized the mean squared error
between reconstructed and expected 2D axial slices during training. The method
detects anomalies by thresholding the resulting residual image of between the
input image vs its reconstruction to obtain a binary segmentation, similarly to
Baur et al. [53] and Chen et al. [59]. We followed Baur et al. [53] and selected
three thresholds as the 85th , 90th , and 95th percentile from the histogram of
reconstruction errors on the considered training set, resulting in the brightness
of 143, 194, and 282, respectively. For simplicity, we call these three versions of
the method as CAE-85, CAE-90, and CAE-95, respectively, based on the chosen
percentiles.

Metrics: Although SAAD detects abnormal asymmetries regardless of the type of
anomalies, we can compute quantitative scores only over those lesions that are
labeled in ATLAS, which are a subset of what SAAD can detect. For these lesions,
we �rst computed the detection rate based on at least 15% overlap between lesions
labeled in ATLAS with detected volumes of interest (VOIs) with abnormal asym-
metries (Tables 9–11, row 1), as detected by SAAD (supervoxels) and CAE (seg-
mented regions).We then computed the true positive rate (recall) that measures the
percentage of lesion voxels correctly classi�ed as abnormal (Tables 9–11, row 2).
Although our focus is on detecting abnormal asymmetries, we also measured the
Dice score (Appendix C.2) between lesions and the detected VOIs to check SAAD’s
potential as a segmentation method (Tables 9–11, row 3). However, observe that
truly abnormal asymmetries detected by our method that are not annotated as
lesions in the ground-truth masks will be incorrectly considered as false-positive
and, thus, underestimating the Dice score. We could then consider only supervox-
els overlapped with the annotated lesions to compute Dice scores, but this would
be unfair to the considered baselines.
Highly accurate detection methods are useful only if their false positive count is

quite low. Otherwise, one needs to manually inspect themany positives to validate
them, which is very costly. To gauge this, we provided false-positive (FP) scores
in terms of both voxels and supervoxels concerning the ground-truth stroke le-
sions of ATLAS. Hence, some regions with true abnormal asymmetries but with
no labeled masks in ATLAS are considered FP (e.g., see the deformed ventricles of
Fig. 5.7a). This is the best we can do in the absence of labeled masks for all kinds
of abnormalities in this dataset.
To evaluate the detection quality, we proposed a set of �ne-to-coarse metrics,

as follows. At the �nest level, we �rst computed themean number of FP voxels, i.e.,
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incorrectly classi�ed as abnormal (Tables 9–11, row 4). We normalized this count
with respect to all classi�ed voxels (Tables 9–11, row 5), i.e., the total number of
voxels inside the right hemisphere for SAAD, and both hemispheres for CAE.

At the next level, we estimated FP supervoxels as those whose voxels overlap
less than 15% with ground-truth lesion voxels. We computed the mean number of
FP supervoxels and their proportions to the total number of supervoxels (Tables 9–
11, rows 6 and 7). The �rst metric gives us an estimation of the visual-inspection
user e�ort. The second metric checks how imprecise is the detection regarding the
total number of regions that the user has to visually analyze.

When visually analyzing FP supervoxels, it is harder to check many discon-
nected supervoxels spread across the brain (Fig. 5.7b) than a few connected ones
(Fig. 5.7a). Hence, at the coarsest level, we gauge visual analysis user-e�ort by
evaluating the two metrics outlined above on the level of connected FP supervoxel
components (Tables 9–11, rows 8 and 9).

Finally, we also computed themean processing times of each method (Tables 9–
11, row 10) for preprocessed images, thus excluding the mean time of the prepro-
cessing step (Fig. 5.1, Step 4), which is 90 seconds on average. All experiments
were executed on an Intel i7 3.60GHz PC with 64GB RAM and an NVIDIA Titan
XP 12GB GPU.

source image symm. supervoxels

(a)

symmetrical supervoxelssource image

(b)

Figure 5.7: Examples of false-positive supervoxels for two di�erent brain slices.

5.4 �������

We next discuss our results from the perspective of our key questions, stated in
Section 5.3.

5.4.1 Impact of Supervoxel Segmentation Quality on Abnormal Asymmetry Detec-
tion

To check the e�ectiveness of SAAD for abnormal brain asymmetry detection
and if the supervoxel segmentation in�uences this task, we used two variants
of the SymmISF method to extract pairs of symmetric supervoxels (one for each
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hemisphere), as follows.

Uniform SymmISF: This method chooses N initial seeds uniformly distributed
in a hemisphere, with N de�ned by the user (Section 5.2.3). While simple, this
strategy does not guarantee to place at least one seed within each asymmetric
anomaly, especially when N is small. In turn, this leads to undersegmentation
— the missed lesions will be assimilated to background. Conversely, when N
is too large, this easily leads to oversegmentation of larger lesions into many
supervoxels, which have too little individual information to capture asymmetries.

Asymmetry-guided SymmISF: To better �t supervoxels with asymmetric
anomalies of various morphologies, this strategy �rst seeds the highest-
asymmetry-value brain regions (where anomalies are more likely to occur) and
then seeds the remaining, more symmetric, areas with a �xed number of extra
seeds (Section 5.2.3). Since asymmetries vary for each image, the �nal number of
supervoxels is dynamically obtained. For the experiments, we �xed a number of
100 extra seeds uniformly distributed on low asymmetric regions of the images.

We quantitatively compared the above two seeding strategies by using 5-fold
cross-validation on ATLAS, considering one subset for validation (46 images) and
the remaining four subsets for testing (183 images) in each fold. For this initial ex-
periment, we �rst used the following parameters for SAAD, empirically obtained
by observing a few training images: � = 0.08, � = 3.0, � = 2.0, asymmetry his-
tograms of 128 bins. We considered the one-class Support Vector Machine classi-
�er [201] with the best parameters found for hippocampal asymmetry detection,
as stated in Section 4.3.3: kernel = linear, and nu = 0.1. For Uniform SymmISF, we
considered �ve di�erent numbers of seeds N : {100, 250, 400, 550, 700}.
Table 9 shows the mean results of SAAD with Uniform SymmISF for the pri-

mary stroke lesions of ATLAS by considering all �ve folds, as well as selected
visual results. As expected, Uniform SymmISF presents poor detection results for
lowN values since anomalies are covered by large supervoxels that mix lesion and
background voxels (see images in Table 9). As N increases, the chance of placing
at least one seed inside each lesion is higher, even for smaller lesions, which leads
to better results: We see how the detection rates and mean recall monotonically
increase with N in Table 9. Likewise, the number of FP voxels also increases with
N , which explains the similar Dice scores from all methods. Yet, there is no guaran-
tee that increasing N yields increasingly-better �tting supervoxels to lesions. This
is visible in the results for image 2 (insets) in Table 9, where we see that a small
lesion was missed for N = 700 but found for N = 550. Moreover, the number of
FP voxels and supervoxels also increase as N increases — compare rows 4, 6, and
8 of Table 9. This results in considerably high FP rates for large N values. Hence,
visual inspection becomes di�cult even when the detection rate is high (compare
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Table 9: Experimental results for SAAD with Uniform SymmISF for di�erent numbers of
seeds. Top part: higher values mean better accuracies. Bottom part: lower values
mean better accuracies. Each result contains a box (inset) surrounding the lesion
whose border color indicates if the lesion was detected (green) or missed (red). The
abbreviation k denotes thousands.

Uniform SymmISF
N=100 N=250 N=400 N=550 N=700

1 Detection rate 0.389 ± 0.058 0.62 ± 0.052 0.738 ± 0.041 0.808 ± 0.033 0.86 ± 0.028

2 True positive rate
(mean recall) 0.159 ± 0.024 0.293 ± 0.025 0.364 ± 0.022 0.409 ± 0.017 0.447 ± 0.018

3 Dice 0.12 ± 0.022 0.13 ± 0.02 0.127 ± 0.02 0.126 ± 0.019 0.123 ± 0.018

4 # FP voxels 14k ± 1.36k 26k ± 1.69k 32k ± 1.71k 36k ± 1.75k 40k ± 1.77k

5 FP voxel rate 0.018 ± 0.002 0.033 ± 0.002 0.041 ± 0.002 0.045 ± 0.002 0.05 ± 0.002

6 # FP supervoxels 8.83 ± 0.27 30.54 ± 0.84 49.97 ± 1.20 67.12 ± 1.86 90.91 ± 2.19

7 FP supervoxel rate 0.103 ± 0.003 0.122 ± 0.003 0.128 ± 0.003 0.128 ± 0.004 0.13 ± 0.003

8
# FP connected  
supervoxels 6.39 ± 0.17 18.40 ± 0.37 26.11 ± 0.47 32.67 ± 0.68 41.03 ± 0.76

9
FP connected 
supervoxel rate 0.077 ± 0.002 0.078 ± 0.002 0.071 ± 0.001 0.067 ± 0.001 0.063 ± 0.001

10 Mean processing time 
(in secs)

39.35 ± 0.98 59.08 ± 0.90 83.68 ± 1.00 111.77 ± 1.49 162.24 ± 12.59
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row 1 and rows 4–9 for N = {550, 700}). Also, the more supervoxels we extract,
the longer is the processing time, as shown in Table 9, row 10.
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We next compare the Uniform and Asymmetry-guided SymmISF versions for
SAAD against three versions of CAE, as presented in Table 10. For simplicity, we
considered only the version of Uniform-SymmISFwith the best detection accuracy.
Also, note that only SAAD reports false-positive supervoxel-based metrics due to
its VOI representation.
CAE-85 and CAE-90 present considerably higher detection scores, 0.995 and

0.943, respectively, than the two versions of SAAD: Uniform SymmISF (0.86) and
Asymmetry-guided SymmISF (0.851). However, these impressive results are mis-
leading as CAE reports drastically (about 20x) more false-positive voxels than
SAAD — compare rows 4 and 5 in Table 10. For instance, although CAE-85 almost
detects all lesions, it misclassi�es 40% of the hemispheres as abnormal, which is
far from being reasonable and hinders the visual analysis (we expect just a small
portion of the brain, e.g., 1%). These high FP rates explain the poor Dice scores for
CAE in Table 10, which in turn are compatible with the ones reported in [59]. Ad-
ditionally, CAE is speedy (running time about 2s per image) and yields very noisy
detected regions, especially in regions with transitions between white and gray
matter (e.g., the cortex), that hinder the subsequent visual inspection (see the re-
sults for the considered images in Table 10). Even though the FP voxels decrease as
higher thresholds are considered, the detection score can be hugely impacted; for
example, the threshold at the 95th percentile approximately halves both the detec-
tion score and FP voxels rates compared with the results for the 90th percentile in
Table 10. CAE might present better results by using a considerable large training
set and/or some additional post-processing, but this is not considered in [53, 59].
CAE presents better results for other medical imaging modalities, such as CT and
T2 [53, 59].

Asymmetry-guided SymmISF has a slightly worse detection rate (0.851) com-
pared to Uniform SymmISF (0.86). It is also able to �nd small abnormal asym-
metries (Table 10, images 1-2). However, it fails to detect very subtle and/or tiny
asymmetries (Table 10, image 3). Also, this seeding strategy has lowest number of
FP (connected) supervoxels and FP voxel scores. However, the expert still has to
unnecessarily analyze about 29 FP connected supervoxels per image, which may
take a considerable time. The next section details our strategy to improve SAAD
with Asymmetry-guided SymmISF to yield higher detection rates and still attenu-
ate FP scores.

5.4.2 Improving the end-to-end method

SAAD with Asymmetry-guided SymmISF is more suitable for our task since the
hemispheric asymmetries of each image guide its supervoxel estimation. More-
over, as Table 10 shows, the asymmetry-guided seeding scales computationally
better, being roughly twice as fast as uniform seeding for a comparable quality.
Hence, we decided to improve Asymmetry-guided SymmISF by (i) optimizing its
parameters by grid-search aiming to increase detection accuracy; and (ii) propos-
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Table 10: Quantitative and qualitative comparison between the two versions of SAAD and
CAE (with di�erent thresholds) for the ATLAS dataset. Top part: higher values
mean better accuracies. Bottom part: lower values mean better accuracies. Each
result contains a box (inset) surrounding the lesion whose border color indicates
if the lesion was detected (green) or missed (red). The abbreviation k denotes
thousands.

Uniform SymmISF

N=700
Asymmetry-guided 

SymmISF CAE-85 CAE-90 CAE-95

1 Detection rate 0.86 ± 0.028 0.851 ± 0.016 0.995 ± 0.002 0.943 ± 0.018 0.55 ± 0.03

2 True positive rate
(mean recall) 0.447 ± 0.018 0.436 ± 0.009 0.439 ± 0.01 0.333 ± 0.011 0.199 ± 0.011

3 Dice 0.123 ± 0.018 0.132 ± 0.02 0.018 ± 0.003 0.017 ± 0.003 0.016 ± 0.002

4 # FP voxels 40k ± 1.77k 28k ± 0.55k 644k ± 2.55k 428k ± 2.1k 206k ± 3.68k

5 FP voxel rate 0.05 ± 0.002 0.035 ± 0.001 0.4 ± 0.002 0.267 ± 0.001 0.129 ± 0.002

6 # FP supervoxels 90.91 ± 2.19 58.21 ± 1.83

7 FP supervoxel rate 0.13 ± 0.003 0.194 ± 0.004

8
# FP connected  
supervoxels 41.03 ± 0.76 29.81 ± 0.88

9
FP connected 
supervoxel rate 0.063 ± 0.001 0.111 ± 0.002

10 Mean processing time 
(in secs)

162.24 ± 12.59 63.03 ± 6.73 2.13 ± 0.08 2.09 ± 0.08 2.04 ± 0.16
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ing a false-positive-attenuation (FPA) strategy. We describe these optimizations
next.
For parameter optimization, we considered the validation set of each fold

(Section 5.3) and the following search space: � 2 {0.04, 0.06, 0.08, 0.1, 0.12},
� 2 {1.0, 3.0, 5.0, 7.0, 9.0}, and� 2 {0.5, 1.0, 1.5, 2.0, 2.5}. As cost function, we con-
sidered the Intersection over Union (IoU; Appendix C.2) metric that computes the
overlap of a supervoxel with each lesion. Indeed, when this overlap is maximal,
each lesion is accurately covered by precisely one supervoxel. The best parame-
ters found by the grid search were � = 0.12, � = 5, and � = 0.5. Note that we used
IoU as cost function, and not the metrics listed in Tables 9–10, since it generically
looks at how supervoxels �t lesions, whereas those metrics gauge higher-level,
more task-speci�c, concerns.
We repeated the same experiment by considering the optimized parameters.

Table 11 presents the results for this seeding strategy, called next Optimized-
SymmISF. We replicated the results of CAE-85 and CAE-90, and Asymmetry-
guided SymmISF in Table 11 tomake the comparison easier.We see that Optimized-
SymmISF has a higher detection rate (0.939) than Asymmetry-guided Symm-
ISF (0.851), being slightly worse than CAE-90 (0.943). Optimized-SymmISF also
presents the highest true positive rate (0.4889) among all comparedmethods. How-
ever, it still has high FP rates and has a considerable increase for the mean num-
ber of FP supervoxels and connected supervoxels (Table 11, rows 6 and 8) than
Asymmetry-guided SymmISF.

To attenuate FPs, we �rst performed an analysis of their characteristics. Fig. 5.8
presents two parallel coordinate plots (PCPs) correlating the following three met-
rics on each FP supervoxel s: (i) distance d of the centroid of s to the right hemi-
sphere border; (ii) volume of s; and (iii) the mean asymmetry value inside s. Both
PCPs are identical except by their highlighted examples (in red).
Fig. 5.8a highlights FP supervoxels close to the hemisphere’s border (d < 5mm),

i.e., in the cortex. These supervoxels are relatively small with high variability of
mean asymmetries inside them and usually cover gyri and sulci (see the brain
slices beside the PCP), which are naturally asymmetric. Conversely, larger FP su-
pervoxels are farther from the hemisphere border (Fig. 5.8b), although their mean
asymmetries have high variability. By visually inspecting them, we can also �nd
true abnormal regions deformed by the stroke lesions in the dataset (see the ven-
tricles in the brain slices beside the second PCP). Hence, it seems reasonable to
reduce false-positive supervoxels in the cortex.
To do this, we propose a false-positive-attenuation (FPA) strategy that accentu-

ates the normal asymmetry map (Section 5.2.2) by adding the standard-deviation
asymmetries from the training set to it. As a result, the asymmetry map of the
test image (output of Step 5 in Fig. 5.1) is more attenuated so that only highly
asymmetric supervoxels will be detected as abnormal. Next, we remove the initial
seeds found by Asymmetry-guided SymmISF, whose distance to the hemisphere
border is less or equal to 5 mm, as suggested in Fig. 5.8a. We repeated the same
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Table 11: Quantitative and qualitative comparison between SAADafter parameter optimiza-
tion, and the baselines for the ATLAS dataset.Toppart: higher valuesmean better
accuracies. Bottom part: lower values mean better accuracies. Each result con-
tains a box (inset) surrounding the lesionwhose border color indicates if the lesion
was detected (green) or missed (red). The abbreviation k denotes thousands.

CAE-85 CAE-90
Asymmetry-guided 

SymmISF
Optimized-
SymmISF

Optimized-
SymmISF with FPA

1 Detection rate 0.995 ± 0.002 0.943 ± 0.018 0.851 ± 0.016 0.939 ± 0.008 0.862 ± 0.013

2 True positive rate
(mean recall) 0.439 ± 0.01 0.333 ± 0.011 0.436 ± 0.009 0.489 ± 0.006 0.451 ± 0.006

3 Dice 0.018 ± 0.003 0.017 ± 0.003 0.132 ± 0.02 0.123 ± 0.018 0.19 ± 0.018

4 # FP voxels 644k ± 2.55k 428k ± 2.1k 28k ± 0.55k 39k ± 1.87k 11k ± 1.17k

5 FP voxel rate 0.4 ± 0.002 0.267 ± 0.001 0.035 ± 0.001 0.049 ± 0.002 0.014 ± 0.002

6 # FP supervoxels 58.21 ± 1.83 98.15 ± 1.53 21.19 ± 0.87

7 FP supervoxel rate 0.194 ± 0.004 0.176 ± 0.003 0.065 ± 0.005

8
# FP connected  
supervoxels 29.81 ± 0.88 54.59 ± 0.73 15.98 ± 0.56

9
FP connected 
supervoxel rate 0.111 ± 0.002 0.107 ± 0.001 0.049 ± 0.004

10 Mean processing time 
(in secs)

2.13 ± 0.08 2.09 ± 0.08 63.03 ± 6.73 111.97 ± 13.65 72.36 ± 9.19

im
ag

e 
1

Ground-truth
segmentation

im
ag

e 
2

Ground-truth
segmentation

im
ag

e 
3

Ground-truth
segmentation

su
pe

rv
ox

el
s

re
su

lt
su

pe
rv

ox
el

s
re

su
lt

su
pe

rv
ox

el
s

re
su

lt

no supervoxels

no supervoxels

no supervoxels

method does not
use supervoxels

parameter optimization for SAAD using FPA, �nding the optimal values � = 0.06,
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Dist. from Centroid to
Right Hesmis. Borders (mm)

Supervoxel
Volume (mm3)

Mean
Asymmetry

symmetrical supervoxels

source image

(a) Highlighted lines for distances within [0, 5] mm.

Mean
Asymmetry

Supervoxel
Volume (mm3)

Dist. from Centroid to
Right Hesmis. Borders (mm)

ground-truth
lesion

segmentation
source image

symmetrical supervoxels

(b) Highlighted lines for distances within (5, 20] mm.

Figure 5.8: Correlation between some characteristics of false-positive supervoxels. Each
false-positive supervoxel is a line in each plot that correlates the distance from
its centroid to the right hemisphere’s borders, its volume, and the mean asym-
metry inside it. Red lines indicate supervoxels with distances (a) in [0, 5] mm
and (b) in (5, 20] mm. An example of these corresponding supervoxels is shown
beside each plot.

� = 5, and� = 0.5. Then, we repeated the full detection experiment for the optimal
parameter method (called Optimized-SymmISF with FPA).
Table 11 (rightmost column) shows the results. Optimized-SymmISF with FPA

has slightly better detection rate (0.862) and TP rate (0.451) to Asymmetry-guided
SymmISF. Also, it can detect subtle and tiny asymmetric lesions (Table 11, image 3),
which indeed are well-de�ned by its supervoxels. Although its detection rate is
lower than Optimized-SymmISF, it attains the lowest FP rates from all considered
methods (compare rows 4–9 in Table 11). This method yields, on average, only
1.40% of all voxels as FPs, and these cover only 4.9% of all connected supervoxels.
Moreover, Optimized-SymmISF with FPA yields about from twice to three times
less FP connected supervoxels for visual analysis than the other versions of SAAD,
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which decreases the user e�ort. Hence, Optimized-SymmISF with FPA has the best
balance between high detection rates and low FP rates from all studied methods.

Next, we compared Optimized-SymmISF with FPA, our best method so far, with
other related methods in the literature. Such methods are usually designed for the
segmentation of, e.g., organs or lesions. As we do not have access to implementa-
tions of these methods running on the same dataset as ours, except for CAE, we
cannot compute all metrics shown in Table 11. The best we can do is to compare
our method with these alternatives as a segmentation tool, using segmentation
scores. However, note, again, that our method is designed primarily for detection,
not segmentation.

Optimized-SymmISF with FPA yields the best Dice score (0.19) among all com-
paredmethods in the experiments. As outlined in Section 5.3.2, however, this score
is underestimated as truly abnormal asymmetries detected by our method, which
are not labeled as lesions in the ground-truth masks, are considered false-positive.
If we considered only symmetric supervoxels overlapped with the annotated le-
sions, such a Dice score leverages to 0.411. While still low, this score is not far
from state-of-the-art results (Dice score 0.4867) on the ATLAS dataset from a su-
pervised method based on U-Net [214]. Interestingly, our method is noticeably su-
perior to CAE, which is an unsupervised method (like ours), reporting Dice scores
of 0.018 and 0.017 for thresholds at the 85th and 90th percentile, respectively. Our
method reports drastically fewer FP voxels than CAE. Also, note that these com-
pared methods yield their above-reported Dice scores by segmenting quite large
lesions; in contrast, we focus on the more challenging problem of �nding many
small lesions (see, e.g., image 3 in Table 11).

5.4.3 Per-supervoxel vs Global Classi�er Design

We now investigate our second key question, i.e., whether a per-supervoxel clas-
si�er design is indeed preferable to a global classi�er. Suppose (hypothetically)
that supervoxel segmentation is entirely irrelevant for the �nal detection accu-
racy. Thus, the features we use (normalized histogram of absolute asymmetries
for each symmetrical supervoxel) should be able to yield robust texture features
for detection regardless of supervoxel quality. Hence, only a single classi�er — not
a (specialized) classi�er per supervoxel for each test image — trained from texture
features of training images should be enough to obtain similar results to those in
Tables 9–10.

To test this hypothesis, we �rst chose a brain image from ATLAS (Fig. 5.9)
with a large asymmetric stroke lesion, which is not as challenging to detect as
a small one. If our hypothesis were correct, this lesion should be classi�ed eas-
ily by global classi�er. If global classi�cation failed, then the situation would be
even worse for smaller, harder to detect, lesions. To investigate this further, we
projected the texture feature vectors of all symmetric supervoxels extracted by
Optimized-SymmISF with FPA using t-SNE [202] (Fig. 5.9). Here, each point rep-
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resents a symmetric supervoxel, colored by its overlapping percentage with the
ground-truth lesion. We see that there is no clear separation between the high-
overlap supervoxels (warm-colored points) and healthy-tissue supervoxels (cool
colors), even though the considered lesion is very well-de�ned by a single super-
voxel (compare the brain slices in Fig. 5.9). Rauber et al. [203] showed that the
visual separability of classes in a t-SNE projection is highly correlated with the
ability of a classi�er to separate classes in the original feature space. Hence, since
we do not �nd good visual separation, we conclude that a single classi�er only
based on texture features is not su�cient to detect lesions, even large ones.

Ground-Truth (GT)
Lesion Segmentation

Symm. Supervoxel with the
Highest Overlapping with GT

Overlapping
Percentage

Figure 5.9: t-SNE projection (perplexity of 50) from texture feature vectors (normalized his-
togram of absolute asymmetries) for the symmetric supervoxel extracted by
Optimized-SymmISF with FPA for a given stroke image. The overlapping per-
centage between the ground-truth lesion segmentation and each supervoxel is
color-encoded in the plot.

5.5 ��������� ���� ��� ��� ������ ����� �����

This section extends SAAD for brain anomaly detection in the own native image
space (NIS) of each test image. NIS is commonly used in clinical routine to provide
diagnosis, quanti�cation of disease severity, and treatment planning.
The simplest approach consists of performing SAAD in the standard image

space (SIS), as proposed in Section 5.2, and then mapping the results to NIS by
applying the inverse transformation, obtained by the image registration. Even
though this strategy presents reasonable results for most regions in the brain
(Fig. 5.10), others are “normalized” due to image registration, i.e., they seem to be
healthier than they are — compare the deformed left ventricle in NIS in Fig. 5.10a
with the one in Fig. 5.10b, after non-rigid registration to a given template. Conse-
quently, this normalization might attenuate abnormal asymmetries that, in turn,
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results inmisdetection (Figs. 5.10c–d). Therefore, we need a strategy that preserves
real brain asymmetries in NIS for the subsequent analysis.

R

(a) NIS. (b) SIS. (c) Results in SIS.

L

(d) Results in NIS.

Figure 5.10: Results of the simplest extension of SAAD for the native image space (NIS). (a)
Axial slice of a 3D MR-T1 stroke image (gold-standard borders in red) in NIS.
(b) Resulting axial slice after non-rigid registration from (a) to a standard image
space (SIS) from a given template. (c) Detected abnormal asymmetries for (b)
by SAAD. (d) Resulting detected abnormal asymmetries for (a) after mapping
(c) to NIS by the inverse transformation. The arrows point to the deformed left
ventricle, damaged by the stroke. The severe deformation in NIS is mitigated
in SIS, which impairs its detection.

The key challenge is �nding corresponding regions between hemispheres, as
these di�er in shape, size, and positioning in NIS. Thus, we cannot use MSPs to
symmetrically separate such structures, mainly when severe morphological defor-
mations exist (Fig. 5.10). The next sections present the proposed approach, called
Native Supervoxel-based Abnormal Asymmetry Detection (N-SAAD), and report the
experimental results.

5.5.1 Description of N-SAAD

We extend SAAD to perform asymmetry detection in the native image space (NIS)
by basically changing only how we compute brain asymmetries for the test image,
its symmetrical supervoxel segmentation, and its feature extraction. The remain-
ing pipeline steps are the same as presented in Section 5.2 and illustrated in Fig. 5.1.
We next detail these proposed changes.

5.5.1.1 Asymmetry Computation

Let X be the set of preprocessed and registered 3D training images of healthy
subjects, I the 3D test image after preprocessing except registration (Section 5.2.1),
and T the chosen template. We obtain the set of asymmetry maps AX for all X
exactly as proposed in Section 5.2.2, i.e., by computing the voxel-wise absolute
di�erences between left and right hemispheres with respective to their MSPs. We
also create the normal-asymmetry map AX by averaging the absolute di�erence
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values inAX . We mapAX to I — by applying the deformation �elds resulting from
the registration betweenT and I — to attenuate the test asymmetries, as described
next.
Since hemispheres in theNIS can be very di�erent in shape, size, and positioning

— compare both hemispheres in Fig. 5.11a — we cannot solely rely on the MSP to
compute asymmetries for I , as performed by SAAD (Section 5.2.2). Thus, we �rst
�ip the left segmented hemisphere (Fig. 5.11c) to the right one, by using the MSP,
to keep both hemispheres in the same direction. Next, we register the �ipped left
hemisphere (Fig. 5.11c) to the right one (Fig. 5.11b) and histogram-match them
to guarantee spatial correlation between them (Fig. 5.11d). Section 5.5.2 evaluates
N-SAAD with two di�erent registration types for this step. Finally, we compute
voxel-wise absolute di�erences between the correlated hemispheres and subtract
the mappedAX from them. Resulting positive values form a �nal asymmetry map
AI for the test image I (Fig. 5.11e).

(a) (b) (c) (d) (e)

Figure 5.11: Asymmetry computation of a 3D test image in its own native image space. (a)
Axial slice of a 3D test stroke image after preprocessing and segmentation of
the right (red borders) and left hemisphere (green borders). (b) Segmented right
hemisphere. (c) Segmented left hemisphere �ipped to the right hemisphere us-
ing the mid-sagittal plane. (d) Resulting left hemisphere after registering (c) to
(b), by non-rigid registration, and histogram-matching them. (e) Asymmetry
map resulting from the subtraction (only positive values) between (d) and (b)
and attenuation with a precomputed mapped normal-asymmetry map.

5.5.1.2 Symmetric Supervoxel Segmentation in NIS

Since SymmISF considers that the MSP separates brain hemispheres equally af-
ter registration on a given symmetric template, we proposed a simple change to
adapt it to work in NIS. Given a 3D test image (Fig. 5.12a) and its computed asym-
metry map (Fig. 5.12b), both in NIS, we �rst perform SymmISF (Section 5.5.1.1)
only inside the right hemisphere by using its corresponding segmentation mask.
The result is a label map in which each supervoxel is assigned to a distinct label
(Fig. 5.12c). Finally, we map these supervoxels by using the inverse transformation
from the corresponding hemisphere registration — previously performed during
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asymmetry computation (Section 5.5.1.1) — to obtain the symmetrical supervoxels
in the left hemisphere (Fig. 5.12d), which yield the �nal label map L (Fig. 5.12e). We
could proceed conversely, i.e., apply SymmISF on the left hemisphere, and map the
result to the right hemisphere. Finally, note that the “symmetrical” supervoxels of
each pair do not have the precise shape and volume — compare the supervoxels
in Fig. 5.12c and their corresponding symmetrical ones in Fig. 5.12d — as obtained
by SymmISF in SIS (Section 5.2.3).

(a) (b) (c) (d) (e)

Figure 5.12: SymmISF in NIS. (a) Axial slice of a 3D test stroke image after preprocessing
and segmentation of the right (red borders) and left hemisphere (green borders).
(b) Asymmetry map of (a). (c) Resulting supervoxels for the right hemisphere.
(d) Correspoding symmetrical supervoxels for the left hemisphere. (e) Final
label map with the symmetrical supervoxels: combination of (c) and (d).

5.5.1.3 Feature Extraction and Classi�cation

In Section 5.5.1.1, we computed the set of training asymmetries AX — i.e., our
adopted knowledge about healthy brains — on the standard image space of a given
templateT , whereas we computed the asymmetriesAI of the 3D test image I in its
own native image space (NIS). As such, we cannot directly use the symmetrical su-
pervoxels L, which is segmented in NIS, to extract asymmetry features forAX . We
need to map L on T to guarantee spatial correlation between supervoxels in both
coordinate spaces. This is the main di�erence compared to the feature-extraction
step of SAAD (Section 5.2.4), where, in turn, there is a single coordinate space
— and, consequently, a single symmetrical supervoxel map — to extract features
from the training and testing asymmetry maps.

Initially, we register I on to T and map L by using the resulting deformation
�elds, resulting in the map LT . Note that L and LT have the same symmetrical
supervoxels, only mapped in di�erent coordinate spaces. As in Section 5.2.4, we
train a one-class classi�er (OCC) for each pair of symmetrical supervoxels in LT ,
by using as feature vector the normalized histogram of the training asymmetries of
AX inside the pair. Next, we extract the same features for the testing asymmetries
in AI inside each pair of symmetrical supervoxel in L. Finally, we use the trained
OCCs to classify their corresponding pairs in the test image as normal or abnormal.
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One might claim to compute the asymmetries of each training image in its spe-
ci�c NIS, as performed for the test image. However, this would make the feature
extraction and classi�ers’ training considerably slow, since we would have to map
L to the coordinate space of each training image (multiple registrations for each
new test image). Instead, our strategy simpli�es this process when considering the
coordinate space of T to compute all training asymmetries, which is drastically
faster.

5.5.2 Preliminary Experiments

We conducted preliminary experiments to assess the accuracy of N-SAAD, as fol-
lows.

Experimental Protocol

We adopted the same evaluation protocol presented in Section 5.3: 524 MR-T1 con-
trol images from the CamCan dataset [220] for training, and 229 MR-T1 images of
stroke patients from the ATLAS dataset [34] for testing. Although we do not per-
form any parameter optimization in these preliminary experiments — as carried
out for SAAD in Section 5.4.2 — we considered the same 5-fold cross-validation
on ATLAS, de�ned in Section 5.4.1, to simplify comparisons between SAAD and
N-SAAD. We also used the exact evaluation metrics considered in Section 5.3.
We evaluated N-SAAD using both a�ne and non-rigid registration for the en-

tire pipeline (Section 5.5.1) — i.e., registration of the training images and test image
to the template, and registration between the test image’s hemispheres. We per-
formed all image registrations by Elastix [107]. Finally, we instantiated N-SAAD
with the same initial parameters used for SAAD (Section 5.4.1): � = 0.08, � = 3.0,
� = 2.0, asymmetry histograms of 128 bins, and one-class support vector machine
classi�ers [201] with linear kernel and nu = 0.1.
All experiments were executed on an Intel i7 3.60GHz PC with 64GB RAM and

an NVIDIA Titan XP 12GB GPU.

Results

Table 12 compares experimental results for N-SAAD against two versions of
SAAD, Asymmetry-guided SymmISF and Optimized SymmISF with FPA, presented
in Section 5.4. Observe that the former is the initial version of SAAD, which uses
the same parameters of N-SAAD, whereas the latter uses optimized parameters
and a false-positive-attenuation scheme. For the sake of simplicity, we call the for-
mer as initial-SAAD and the latter as optimized-SAAD. Lastly, Fig. 5.13 shows some
visual results for N-SAAD.

N-SAAD with a�ne registration reports the best detection scores, detecting
89.6% of the lesions with a considerably higher mean recall (0.579) than the com-
pared methods. This superiority, however, contrasts with its false-positive (FP)
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Table 12: Quantitative comparison of N-SAAD, instantiated with a�ne and non-rigid reg-
istration, and two versions of SAAD. All scores of SAAD were copied from Ta-
ble 11: initial-SAAD refers to Asymmetry-guided SymmISF, whereas optimized-
SAAD refers to Optimized-SymmISF with FPA. Top part: higher values mean
better accuracies. Bottom part: lower values mean better accuracies. The abbre-
viation k denotes thousands.

SAAD
(initial)

SAAD
(optimized)

N-SAAD
(affine registration)

N-SAAD
(non-rigid 

registration)

1 Detection rate 0.851 ± 0.016 0.862 ± 0.013 0.896 ± 0.021 0.856 ± 0.016

2 True positive rate
(mean recall) 0.436 ± 0.009 0.451 ± 0.006 0.579 ± 0.019 0.421 ± 0.018

3 Dice 0.132 ± 0.02 0.19 ± 0.018 0.18 ± 0.021 0.284 ± 0.018

4 # FP voxels 28k ± 0.55k 11k ± 1.17k 35k ± 2.45k 6427 ± 639

5 FP voxel rate 0.035 ± 0.001 0.014 ± 0.002 0.03 ± 0.002 0.001 ± 0.001

6 # FP supervoxels 58.21 ± 1.83 21.19 ± 0.87 29.709 ± 1.271 10.809 ± 0.78

7 FP supervoxel rate 0.194 ± 0.004 0.065 ± 0.005 0.121 ± 0.005 0.047 ± 0.003

8
# FP connected  
supervoxels 29.81 ± 0.88 15.98 ± 0.56 21.804 ± 0.566 9.246 ± 0.56

9
FP connected supervoxel 
rate 0.111 ± 0.002 0.049 ± 0.004 0.093 ± 0.002 0.041 ± 0.002

10 Mean processing time (in 
secs) 63.03 ± 6.73 72.36 ± 9.19 225.5 ± 10.5 380 ± 7.24

scores: for example, it presents the highest number of FP voxels (35, 000) regard-
ing all baselines, and it has worse FP scores compared to optimized-SAAD and N-
SAADwith non-rigid registration. Conversely, when comparedwith initial-SAAD,
the other FP scores are consistently better (compare rows 5–9 for both methods in
Table 12).

In contrast, N-SAAD with non-rigid registration presents an equivalent detec-
tion rate (0.856) andmean recall (0.421) with both versions of SAAD,while it yields
drastically lower FP scores (Table 12, rows 4–9). For instance, it reports roughly
half of FP voxels (only 0.1% of hemispheric voxels) compared to optimized-SAAD,
which, in turn, has a false-positive-attenuation scheme. These scores explain the
higher Dice (0.284) compared to the baselines. Moreover, the expert will analyze
only about 9 FP connected supervoxels per image, which leads to the least user
e�ort among all baselines.

Both instances of N-SAAD detect well-de�ned abnormal asymmetries for vi-
sual inspection, which may be related to anomalies (Fig. 5.13, image 1). They can
also �nd small abnormal asymmetries (Fig. 5.13, image 2). However, N-SAAD can-
not detect tiny anomalies (Fig. 5.13, image 3) and pairs of similar and symmetric
anomalies in the same region in both hemispheres (Fig. 5.13, image 4), due to the
lack of asymmetries (see the asymmetries for Fig. 5.13, image 4 pointed by the
arrows).
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Figure 5.13: Results of N-SAAD on the ATLAS dataset. Each row is an axial slice of a 3D
test image. First column: Ground-truth lesion segmentations. Columns 2 and
4: Results of N-SAAD methods. Columns 3 and 5: N-SAAD asymmetry maps
with a�ne and non-rigid registration, respectively. Arrows indicate undetected
lesions.

The good results of N-SAAD indicate that the registration between the hemi-
spheres to spatially correlate them is promising. Non-rigid registration yields less
accentuated asymmetry maps than a�ne registration (Fig. 5.13, Columns 3 and 5),
especially in commonly asymmetric regions in the brain (e.g., the cortex), since it
uses localized deformations to align hemispheres better. Despite yielding fewer FP
anomalies, non-rigid registration is slower than a�ne registration and may also
suppress real abnormal asymmetries (e.g., ventricles of Fig. 5.13, image 1). Fig. 5.11
better illustrates this e�ect: compare the ventricles of (c) and (d).
Additional registrationsmakeN-SAADnoticeably slower than SAAD (from 3.5x

to 6x), especially for non-rigid registration — Table 12, row 10 — which may hin-
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der, for example, large-scale studies. Thus, some optimization or faster registration
methods are desirable. Besides, as optimized-SAAD has improved both detection
and false-positive scores from initial-SAAD — by performing a parameter opti-
mization and a false-positive-attenuation scheme — N-SAADmay follow a similar
strategy to further improve its results.

5.6 ����������

In this chapter, we addressed our research questions by presenting a fully unsu-
pervised approach for abnormal asymmetry detection based on supervoxel seg-
mentation and one-class classi�cation. We also introduced the SymmISF method
that extracts symmetrical supervoxels in the brain. Our proposed approach, named
SAAD, detects abnormal asymmetric lesions of a given target image — previously
registered to the standard image space of a template — by classifying pairs of sym-
metric supervoxels by using a model (one-class classi�er) trained for each pair,
independently, from normal brain anatomies only.

We used SAAD to detect stroke lesions on 3D MR-T1 brain images from a wide
range of di�erent symmetric supervoxels extracted by two di�erent instances of
SymmISF. SAAD achieved higher detection scores and considerably lower false-
positive rates compared to an autoencoder-based approach (also unsupervised
like ours). SAAD can accurately detect from large to small asymmetric anoma-
lies, which indeed are the most challenging ones. Experimental results con�rmed
that the quality of supervoxel segmentation truly impacts anomaly detection, es-
pecially for small anomalies. They also showed that a single global classi�er only
based on texture features is not su�cient to detect even large anomalies, since
their textures are similar to some healthy brain tissues. Putting together our ex-
perimental insights, we conclude that (1) a good �t of symmetrical supervoxels to
lesions and (2) using a per-supervoxel classi�er are bene�cial design decisions for
a good detection of abnormal asymmetries.

Finally, we extended SAAD to perform asymmetry detection in the native image
space (NIS). Instead of working on a single coordinate space de�ned by a template,
the extended approach, called N-SAAD, estimates asymmetries and symmetric su-
pervoxels for each test image in its own NIS. We compared N-SAAD instantiated
with a�ne and non-rigid registration — image registration is mainly crucial dur-
ing asymmetry computation — on the stroke images previously considered. No
parameter optimization was performed for N-SAAD. Results show that both in-
stances of N-SAAD have similar or better detection scores compared to the best
version of SAAD, with drastically lower false-positive scores by using non-rigid
registration. These results indicate that the registration between the hemispheres
to correlate them spatially is promising. However, N-SAAD is considerably slower
than SAAD (from 3.5x to 6x) for performing multiple image registration along its
pipeline.
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Our both proposed methods, however, have two main shortcomings: (i) for
relying on brain asymmetries for anomaly detection, the analysis is limited
only to asymmetric anomalies in the hemispheres; and (ii) they cannot detect
similar and “symmetric” anomalies located roughly in the same region in both
hemispheres (lack of accentuated asymmetries). These limitations motivated us to
further explore the proposed supervoxel classi�cation methodology by replacing
asymmetries with registration errors. We address precisely this solution in the
next chapter.

Possibilities for future work may include to:

1. Improve asymmetry computation;

2. Re�ne the symmetric supervoxel segmentation to de�ne supervoxels in sub-
tle lesions;

3. Investigate other feature-extraction techniques;

4. Investigate other one-class classi�ers;

5. Explore other false-positive-attenuation strategies (especially for N-SAAD);

6. Evaluate N-SAAD after optimizing its parameters;

7. Evaluate both approaches in other medical imaging modalities.

Another worthwhile goal is using additional visual-analytics techniques to �nd
challenging cases where both methods fail to detect complex small-scale lesions,
and then support improving all the above possibilities for future work. One may
also investigate fast projection to perform our approaches on the 2D feature space,
similarly to our solution presented in Chapter 4.
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6DETECT ION OF GENERAL BRA IN ANOMAL I E S

In the previous chapter, we proposed a fully unsupervised supervoxel-based
framework, so-called SAAD, designed to automatically detect anomalies associ-
ated with abnormal brain asymmetries, both in the standard and native image
spaces. SAAD detects outliers as abnormal asymmetries by using a supervoxel
segmentation, combined with a one-class per-supervoxel classi�er.
SAAD obtains higher detection scores and considerably lower false-positive

rates compared to a state-of-the-art unsupervised method. However, its analysis
is limited to asymmetric anomalies in the brain hemispheres (for only relying on
brain asymmetries), ignoring lesions in the cerebellum and brainstem. Also, it can-
not detect similar and “symmetric” anomalies located roughly in the same region
in both hemispheres, because of the lack of accentuated asymmetries.
Although SAAD uses brain asymmetries in two steps — to guide the symmetri-

cal supervoxel segmentation and to extract features for the symmetrical supervox-
els — its pipeline is not strongly related to asymmetries. In fact, after establishing
a spatial correspondence between training control and test images (e.g., by image
registration), the novelty of this pipeline consists of:

(1) extracting supervoxels as meaningful volumes of interest (VOIs) specialized
for each test image; and

(2) for each VOI, generating a local one-class classi�er, trained on control im-
ages, to classify such a VOI as healthy or abnormal on the test image —
outliers are considered anomalies.

Thus, we may generalize such a pipeline by replacing asymmetry maps with
any other distinct saliency map, which must indicate what is more important to
analyze in the images, according to a speci�c problem; in our target problem, brain
anomalies. This map can then improve (1) and (2), and also extend the detection
of (a)symmetric anomalies for the cerebellum and brainstem, thus overcoming
SAAD’s limitations. As such, we may re�ne our two research questions to:

Can we detect brain anomalies by modeling healthy brain patterns based on image
similarity?

This chapter is based on the publications:
(i) S. B. Martins, A. X. Falcão, and A. C. Telea, “BADRESC: Brain anomaly detection based on registra-
tion errors and supervoxel classi�cation,” in International Joint Conference on Biomedical Engineering
Systems and Technologies: BIOIMAGING, pp. 74–81, 2020. Best student paper awards.
(ii) S. B. Martins, A. X. Falcão, and A. C. Telea, “Combining Registration Errors and Supervoxel Clas-
si�cation for Unsupervised Brain Anomaly Detection,” Accepted for publication in Lecture Notes in
Computer Science. Selected paper.
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Following the above observations, this chapter introduces TUSCA — Towards
Unsupervised Supervoxel Classi�cation for Anomaly detection — a general unsuper-
vised anomaly detection framework based on supervoxel classi�cation. As proof
of concept, we instantiate TUSCA by considering registration errors as its saliency
map. We assume that registration errors for anomalies are considerably di�erent
from the registration errors for healthy tissues. We originally named this instanti-
ated method in [51] of BADRESC — Brain Anomaly Detection based on Registration
Errors and Supervoxel Classi�cation.

We structure this chapter as follows. Section 6.1 introduces the general pipeline
of TUSCA and details its instance based on registration errors. Section 6.2 presents
experimental results for anomaly detection in the standard image space, while
Section 6.3 concludes the chapter.

6.1 ����������� �� �����

This section describes the TUSCA framework, instantiated to use registration er-
rors as its saliency map (so-called BADRESC method), for the detection of anoma-
lies in the right and left hemispheres, cerebellum, and brainstem. Note that, for
our target problem, one could use any other saliency map that emphasizes brain
anomalies. TUSCA performs anomaly detection in the standard image space.
Fig. 6.1 presents the pipeline of TUSCA.

Since TUSCA is a generalization of SAAD, this section presents a similar struc-
ture, examples, and diagrams as those presented in Section 5.2 that describe SAAD.
Consequently, making this section self-contained implies some repetition, but rep-
etition also serves as a review for people reading the thesis linearly. Therefore, we
encourage the reader to compare both sections whenever needed.

6.1.1 3D Image Preprocessing

TUSCA performs precisely the same preprocessing operations described in Sec-
tion 5.2.1, which, in turn, follows the pipeline presented in Section 2.3. Therefore,
we refer to Section 5.2.1 for a complete description of such operations and Fig. 5.2
for a visual example of the preprocessing results for a given stroke 3D image.

6.1.2 Saliency Computation

TUSCA generalizes SAAD by mainly replacing brain asymmetries with any other
kind of saliencymap tailored to brain anomaly detection. In short, a saliencymap is
an image whose voxels indicate what is more important (i.e., saliencies) to analyze
in a given test image. For our target problem, an ideal saliency map should only
emphasize brain anomalies, —e.g., by representing them with high grey levels —
so that simple thresholding on this map would perfectly segment such anomalies.
How these maps are estimated, or which algorithm is used for that, does not matter
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Figure 6.1: The pipeline of TUSCA. Steps 1 to 3 (blue part) are performed o�ine. Steps 4
to 8 (pink part) are computed for each 3D test image (detection stage). Step 3
is optional and depends on the target problem. Similarly, the template can be
used in any step if needed. The presented saliency map (output of Step 5) is a
registration-error map for the test image. One may use a di�erent saliency map
according to the target problem.

to perform TUSCA. Note that, for example, SAAD uses a kind of saliency map that
indicates the asymmetries of brain images.
To make the pipeline of TUSCA presented in Fig. 6.1 more general, we include

an optional step to estimate some information about the training saliency maps
(Step 3). For example, one may compute the average saliency map for the train-
ing control images, which may be used to attenuate false positives, similarly to
SAAD. In practice, this strategy serves to improve the quality of saliency maps by
removing undesired saliencies.
The estimation of robust asymmetry maps is a challenging task that has been

intensively investigated, especially in computer vision problems [222]. This sec-
tion proposes to compute registration errors as the saliency maps for TUSCA. We
hypothesize that registration errors for anomalies are considerably di�erent from
the registration errors for healthy tissues, which favors outlier detection. We next
detail such a strategy.

Registration Error Computation

When registering images to a standard template with only healthy tissues, we
expect that registration errors (REs) — i.e., voxel-wise absolute di�erences between
the registered image and the template — are lower and present a di�erent pattern
compared to anomalies (Fig. 6.2e). However, some healthy structures in the cortex,
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such as gyri and sulci, present high REs due to their complex shapes and very
large variability between subjects — observe the cortex of the template and the
registered image in Figs. 6.2a and 6.2d; note its resulting REs in Fig. 6.2e. As such,
we need to apply some attenuation process to avoid detecting false positives in
this region.

(a)

1.0

0.0

(b) (c)

(d) (e) (f) (g)

Figure 6.2: Registration error computation. (a) Axial slice of the brain template. (b) Eu-
clidean Distance Transform (EDT) normalized within [0, 1] computed for the
brain segmentationmask de�ned for the template. Brain borders are shown only
for illustration purposes. (c) Common registration errors for control images. (d)
Axial slice of a test stroke image after preprocessing and registration in (a). The
arrow indicates the stroke lesion. (e) Registration errors. (f) Attenuation of (e)
for the cortex based on the EDT. (g) Final registration errors for the test image:
positive values of the subtraction between (f) and (c).

LetT be the template (Fig. 6.2a) andMT its prede�ned brain segmentation mask
for the right hemisphere, left hemisphere, cerebellum, and brainstem (background
voxels have label 0, and each object has a di�erent label). LetX = {X1, · · · ,Xk } be
the set of k registered training images (output of Step 1 in Fig. 6.1) and I the test
image after preprocessing and registration (output of Step 4 in Fig. 6.1; see also
Fig. 6.2d).

Firstly, we compute the Euclidean Distance Transform (EDT) for each object of
MT and normalize the distances within [0, 1] to build the map E (Fig. 6.2b). Next,
we obtain the set of registration errors RX for all X by computing the voxel-wise
absolute di�erences between X andT (Fig. 6.1, Step 2; see also Fig. 6.2e). For each
training image Xi 2 X , we attenuate REs in its cortex such that for each voxel
� 2 Xi ,
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f (�) = 1 � (E(�) � 1)�

AXi (�) = RXi (�) · f (�),
(6.1)

where E(�) is the Euclidean distance for the voxel � , f (�) is its attenuation factor
within [0, 1], � is the exponential factor of the function, and AXi is the map with
the attenuated REs for Xi . In this work, we considered � = 4. Thus, REs of voxels
close to the brain borders are extremely attenuated, whereas those from voxels far
from the borders are slightly impacted (Fig. 6.2f). A downside of this approach is
that subtle lesions in the cortex tend to be missed due to the lack of REs.
In order to even ignore REs caused by noises or small intensity di�erences in

regions/tissues far from the cortex, we create a common registration error map AX
by averaging the attenuated REs from AX (output of Step 3 in Fig. 6.1; see also
Fig. 6.2c). Finally, we repeat the same steps to compute the attenuated REs for the
test image I and then subtract AX from them. Resulting positive values form a
�nal attenuated registration error map AI for I (output of Step 5 in Fig. 6.1; see
also Fig. 6.2g).
When comparing the �nal registration error map of Fig. 6.2g with the corre-

sponding asymmetry map for the same test image (Fig. 5.3d), we can observe that
both emphasize the anomaly while attenuating saliencies on the cortex. However,
the former computes saliencies for each object of interest independently, which
makes it possible to detect “symmetric” anomalies.

6.1.3 Supervoxel Segmentation

Inspired by the SymmISF method (Section 5.2.3) used in SAAD for symmetrical
supervoxel segmentation, we propose a more general approach that extracts su-
pervoxels in the entire brain guided by generic saliency maps, as shown in Fig. 6.3.
Our supervoxel segmentation is also based on the recent Iterative Spanning Forest
(ISF) framework, presented in Section 2.6. We next detail the proposed approach
and its instance to use registration errors.
Recall a templateT , its prede�ned brain segmentation maskMT (macro-objects

of interest), a preprocessed 3D test image I registered onT , andAI be the saliency
map for I (e.g., the �nal attenuated registration errors). Equivalently to SymmISF,
we �nd initial seeds by selecting one seed per local maximum in AI (see the seeds
in Fig. 6.3). We compute the local maxima of the foreground of a binarized AI at
� ⇥� , where � is Otsu’s threshold [219]. The higher the factor � is, the lower is the
number of components in the binarized AI . We extend the seed set with a �xed
number of seeds (e.g., 100) by uniform grid sampling the regions with low REs of
the binarized image, resulting in the �nal seed set S .
Next, we could then either perform ISF directly on I or a di�erent input image

improved according to speci�c constraints for the target problem. For instance,
when relying on registration errors as saliencymaps, we can even force amatching
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Figure 6.3: General pipeline for supervoxel segmentation. The considered examples in this
�gure come from the registration-error-based instance of TUSCA: the saliency
map AI consists of the attenuated registration errors for a given 3D test image
I (segmented objects are colored), and the input image I 0 is a 2-band volume
formed by stacking I and its corresponding template. The preparation of the
input image is optional so that di�erent instances of TUSCA could follow a dif-
ferent strategy of simply perform ISF directly on I .

between regions in I and T during supervoxel segmentation by stacking them as
the input 2-band volume I 0 of ISF (Fig. 6.3). This strategy, however, is optional and
problem-dependent.

Finally, we perform ISF inside each macro-object of interest in MT , separately,
from the initial seeds. The results are label maps wherein each supervoxel is as-
signed to a distinct number/color. We then combine and relabel the resulting su-
pervoxels to build the �nal supervoxel map L (output of Step 6 in Fig. 6.1).

6.1.4 Feature Extraction and Classi�cation

TUSCA follows SAADwhen relying on designing a set of specialized one-class per-
supervoxel classi�ers (OCCs) speci�c for each test 3D image to detect anomalies.
Each supervoxel estimated for a given 3D test image is then used to train an OCC.
This strategy implicitly considers the position of the supervoxels in the brain dur-
ing classi�cation. TUSCA is �exible for feature extraction so that one can choose
any algorithm to compute the feature vector of each supervoxel. The classi�ers
are trained from control images only and used to identify outlier supervoxels as
anomalies (Fig. 6.1, Step 8).

For the considered instance of TUSCA, the feature vector of each supervoxel Li
consists of the normalized histogram of the attenuated registration errors inside
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Li (Fig. 6.1, Step 7). We consider the one-class linear Support Vector Machine [201]
for classi�cation. Yet, note that di�erent feature extractors and one-class classi�ers
could be used instead the here considered.

6.2 ����������� ��� �������

This section reports the experiments conducted to evaluate our general pipeline
for brain anomaly detection. We adopted the same evaluation protocol presented
in Section 5.3, which is brie�y summarized next.

6.2.1 Evaluation Protocol

Considered Methods: As a proof of concept, we instantiated TUSCA to detect
abnormal registration errors as anomalies, henceforth called BADRESC — Brain
Anomaly Detection based on Registration Errors and Supervoxel Classi�cation. We
compared BADRESC against the primary proposed instance of TUSCA: the SAAD
method (Section 5.2).
We considered two versions of SAAD, Asymmetry-guided SymmISF and Opti-

mized SymmISF with FPA, as presented in Section 5.4. The former is the initial
version of SAAD that uses parameters empirically obtained, whereas the latter
uses optimized parameters and a false-positive-attenuation scheme. For the sake
of simplicity, we call the former as initial-SAAD and the latter as optimized-SAAD.
For these preliminary experiments, BADRESC uses the identical initial pa-

rameters previously considered for SAAD-initial in Section 5.4.1: � = 0.08,
� = 3.0, � = 2.0, histograms of 128 bins, and one-class support vector machine
classi�ers [201] with linear kernel and nu = 0.1.

Datasets: To train the considered methods, we considered the same subset of 524
MR-T1 control images from the CamCan dataset [220] used in Section 5.3.1. As far
as we know, CamCan is the largest public dataset with 3D images of healthy sub-
jects acquired from di�erent scanners. After visually inspecting the entire dataset
(653 images), we have removed some images with artifacts or bad acquisitions,
yielding this subset.
For testing, we also chose the Anatomical Tracings of Lesions After Stroke (AT-

LAS) public dataset release 1.2 [34] in our experiments. Although we do not per-
form any parameter optimization for BADRESC in these preliminary experiments
— as carried out for SAAD in Section 5.4.2 — we considered the same 5-fold cross-
validation on ATLAS (total of 229 images), de�ned in Section 5.4.1, to simplify com-
parisons between SAAD and BADRESC. Such folds consist of 3T images that only
contain lesions in the hemispheres. Additionally, we also evaluated BADRESC for
all the 3T images from ATLAS with stroke lesions in the cerebellum and brainstem
(total of 41 images). Therefore, our study involved a total of 794 images.
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We performed all non-rigid image registrations by Elastix [107]. All images
were registered into the coordinate space of ICBM 2009c Nonlinear Symmetric
template [108] and preprocessed as outlined in Section 5.2.1 (see an example in
Fig. 5.2).

Metrics:We consider the same evaluation metrics de�ned in Section 5.3.2, which,
in short, measures detection and false-positive (FP) scores. Therefore, we refer to
Section 5.3.2 for a full description of all adopted evaluation metrics.

6.2.2 Results and Discussion

Table 13 summarizes all quantitative results for the considered instances of
TUSCA, whereas Figs. 6.4 and 6.5 present some visual results. Both versions of
SAAD present better detection rates and mean recall for hemispheric lesions com-
pared to BADRESC (Table 13, rows 1 and 2), although the di�erence between the
scores is not high— e.g., SAAD-initial has detection score of 0.851while BADRESC
has 0.824. BADRESC reports a better Dice score (0.169) than SAAD-initial (0.132),
being slightly worse than SAAD-optimized (0.19). As outlined in Section 5.3.2,
however, this score is underestimated since real unlabeled anomalies detected by
the methods are considered false-positive. Regardless, there is a large room for
improvements to make these methods accurate for segmentation.

Both BADRESC and SAAD can accurately detect small asymmetric lesions in
the hemispheres (Fig. 6.4, Image 1). Their considered saliencymaps— asymmetries
for SAAD and registration errors for BADRESC — can successfully emphasize this
kind of lesion (see the saliency maps for Image 1 in Fig. 6.4). SAAD cannot de-
tect lesions with low asymmetries, while BADRESC does not have this limitation
(compare the results and saliency maps for Image 2 in Fig. 6.4). However, both
methods are ine�ective in detecting tiny anomalies (Fig. 6.4, Image 3) since their
saliency maps are not able to highlight such anomalies. Poor saliencies result in
the undersegmentation of supervoxels covering anomalies, which compromises
their detection.

BADRESC is a bit faster and reports fewer false-positive (FP) voxels than SAAD
(Table 13, rows 4, 5, and 10), with a considerable di�erence to SAAD-initial: an
average of 8, 980 FP voxels against ⇡ 28, 000. Concerning FP supervoxel scores,
BADRESC is consistently better than SAAD-initial (scores roughly twice higher)
— compare rows 6–9 in Table 13. For instance, SAAD-initial incorrectly classi�es
58.21 supervoxels on average — which consists of 19.4% of all analyzed supervox-
els and 3.5% of the analyzed voxels in the hemisphere, respectively. BADRESC, in
turn, reports an average of 21.43 FP supervoxels, which corresponds to 10.5% of an-
alyzed supervoxels and only 1% of voxels in the entire brain. When compared with
SAAD-optimized, BADRESC yields to a similar number of FP (connected) super-
voxels (Table 13, rows 6 and 8), but it proportionally detects more FP supervoxels
to the total number of analyzed supervoxels (Table 13, rows 7 and 9).
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Table 13: Quantitative results for images from the ATLAS dataset with stroke lesions in the
hemispheres, cerebellum, and brainstem. All scores of SAAD were copied from
Table 11: initial-SAAD refers to Asymmetry-guided SymmISF, whereas optimized-
SAAD refers to Optimized-SymmISF with FPA. Since we performed BADRESC on
all images with lesions in the cerebellum and brainstem, its detection rate is the
exact rate (not a mean). Top part: higher values mean better accuracies. Bottom
part: lower values mean better accuracies. The abbreviation k denotes thousands.

Hemispheres Cerebellum and 
Brainstem

SAAD
(initial)

SAAD
(optimized) BADRESC BADRESC

1 Detection rate 0.851 ± 0.016 0.862 ± 0.013 0.824 ± 0.017 0.683

2 True positive rate
(mean recall)

0.436 ± 0.009 0.451 ± 0.006 0.4 ± 0.012 0.26 ± 0.26

3 Dice 0.132 ± 0.02 0.19 ± 0.018 0.169 ± 0.014 0.11 ± 0.151

4 # FP voxels 28k ± 0.55k 11k ± 1.17k 8.98k ± 748 8.78k ± 7.94k

5 FP voxel rate 0.035 ± 0.001 0.014 ± 0.002 0.01 ± 0.001 0.01 ± 0.01

6 # FP supervoxels 58.21 ± 1.83 21.19 ± 0.87 21.43 ± 1.114 25.63 ± 15.64

7 FP supervoxel rate 0.194 ± 0.004 0.065 ± 0.005 0.105 ± 0.005 0.0971 ± 0.049

8 # FP connected  supervoxels 29.81 ± 0.88 15.98 ± 0.56 16.58 ± 0.654 18.414 ± 10.2

9 FP connected supervoxel rate 0.111 ± 0.002 0.049 ± 0.004 0.083 ± 0.003 0.079 ± 0.034

10 Mean processing time (in secs) 63.03 ± 6.73 72.36 ± 9.19 54.17 ± 1.3 52.62 ± 2.5

BADRESC is less accurate when detecting lesions in the cerebellum and brain-
stem (detection rate of 0.6829). Some of these lesions are indeed challenging, es-
pecially in the cerebellum, whose appearances are similar to their surrounding
tissues (Fig. 6.5, Image 6). Although its FP scores are similar to those of hemi-
spheric lesions — compare rows 4-9 for BADRESC in Table 6.5 — the considered
registration-error attenuation (Eq. 6.1) seems to be very strong for the cerebellum
and brainstem, which impairs the representation of the lesions.
The two evaluated instances of TUSCA show its �exibility and potential for

unsupervised brain anomaly detection. Although the preliminary experimental
results indicate that SAAD-optimize is the best option for the detection of asym-
metric anomalies in the hemispheres, its parameters were previously optimized
for such a problem. In contrast, BADRESC used parameters empirically obtained,
which, even so, resulted in competitive results to SAAD-optimized with the advan-
tage of (i) performing in the cerebellum and brainstem, and (ii) detecting symmet-
ric lesions.
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Figure 6.4: Comparative results between SAAD and BADRESC. All images have a stroke le-
sion in the hemisphere. We present an axial slice of the result and corresponding
saliency map for both methods. Each image contains an inset surrounding the
lesion whose border color indicates if the lesion was detected (green) or missed
(red).
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Figure 6.5: Results of BADRESC for some images with stroke lesions in the cerebellum or
brainstem. Each image contains an inset surrounding the lesion whose border
color indicates if the lesion was detected (green) or missed (red).

6.3 ����������

This chapter presented TUSCA, a general fully unsupervised framework for
anomaly detection. This framework generalizes the previous SAAD method (Sec-
tion 5.2) to use any other distinct saliency maps that emphasizes brain anomalies,
instead of only brain asymmetries. Consequently, we can extend the anomaly de-
tection to the cerebellum and brainstem, as well as detecting lesions with low
asymmetries, in contrast to SAAD. This generalization re�nes our research ques-
tions, which are focused on abnormal brain asymmetry detection.
As proof of concept, we instantiated TUSCA to use registration errors (REs) as

saliency maps, so that abnormal REs are considered as anomalies. We compared
this instance, named BADRESC, with two di�erent versions of SAAD on 3T
MR-T1 images of stroke patients. BADRESC reports a bit lower detection scores
than SAAD for hemispheric lesions, but it attains similar false-positive scores
to the most accurate version of SAAD, being superior to the other version.
BADRESC also detects lesions in the cerebellum and brainstem with promising
results. Consequently, we have shown it is possible to model healthy brain
patterns, based on image similarity, for the detection of brain anomalies, thus
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addressing the question introduced in this chapter.

Future work: The two evaluated instances of TUSCA show its �exibility and
potential for unsupervised anomaly detection. As such, future work may address
several extensions to thiswork. Initially, one could investigate other di�erentmaps
for our target problem, since the quality of the saliency maps directly impacts the
detection accuracy. Likewise, one could focus on designing saliency maps for a
given speci�c problem— e.g., amap that only highlights tumors— so that detection
and segmentation scores will be maximized for such a problem.

Even though we performed TUSCA on brain images, its applicability is not lim-
ited to brains. Indeed, its only major requirement consists of having all images
aligned on the same coordinate space. A robust image registration guarantees such
spatial correspondences among the images. A few other adjustments, such as dif-
ferent preprocessing operators, can also be necessary according to the application.
Therefore, future work include extending and evaluating TUSCA to detect anoma-
lies in other organs (e.g., lungs).

Some possibilities for future work outlined in Section 5.6 can also be investi-
gated for TUSCA. In particular, one could explore other feature-extraction tech-
niques, since we only considered a simple normalized histogram for that.

Concerning BADRESC, one could �rst optimize its parameters and evaluate the
resulting quantitative and qualitative impact. Since brain hemispheres, cerebellum,
and brainstem have di�erent constraints, the use of a di�erent registration-error
attenuation for each of these objects should be further investigated.

BADRESC depends on the quality of image registration in order to generate
high-quality saliency maps. In this work, we register the entire brain of images (af-
ter preprocessing and skull-stripping) to the template. One could then investigate
if the registration of each object, independently, provides more accurate results,
i.e., low registration errors, which yields better detection results.
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7CONCLUS ION

We conclude here our work by revisiting our two research questions stated in
Section 1.4:

RQ1: Can we model normal brain asymmetries?

RQ2: Can we use the normal brain asymmetry model to detect brain anomalies?

To answer these questions, this thesis successfully explored di�erent fully unsu-
pervised approaches, as based on the general pipeline presented by Fig. 1.6, to de-
tect abnormal brain asymmetries associated to anomalies in 3DMR-T1 images.We
successfully presented solutions that showed how unsupervised machine learning
can leverage brain anomaly detection. Our key contributions include:

(1) A novel automatic brain image segmentation method used in di�erent steps
of the proposed approaches (e.g., image preprocessing);

(2) An autoencoder-based method to model normal brain asymmetries of a
given brain structure and detect outliers as anomalies;

(3) An unsupervised supervoxel-based framework to detect abnormal brain
asymmetries as anomalies.

Although this thesis focused on abnormal brain asymmetry detection, as the last
contribution, we still extended the solution (3) — which is only designed for asym-
metric lesions in the hemispheres — for the detection of (a)symmetric brain anoma-
lies in the entire brain (hemispheres, cerebellum, and brainstem) regardless their
asymmetries.
We next summarize such contributions towards our research questions, their

results, limitations, as well as we present plenty of opportunities for future work.

7.1 ����� ����� ������������

Brain image segmentation is an essential task in many applications, such as the
study of brain asymmetries, morphological analysis of the hemispheres, or for a
better understanding of neurological diseases. It consists of the precise segmenta-
tion of the right and left hemispheres, cerebellum, and brainstem. Di�erent prior
steps of the proposed anomaly detection approaches rely on such segmentation
so that a robust segmentation method is required.
Chapter 3 introduced a fast and e�ective solution, named AdaPro, for the auto-

mated segmentation of brain structures in control and anomalous MR 3D images.
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The novelty of AdaPro is it incorporates a texture classi�er based on convex opti-
mization that dynamically indicates the regions of the target 3D image where the
probabilistic atlases (shape constraints) — built from healthy structures/organs —
should be further adapted, due to the presence of anomalies. AdaPro then delin-
eates the objects of interest by a new algorithm based on combinatorial optimiza-
tion and di�usion �ltering.

Experimental results on 3D MR-T1 images of 2T and 3T from epilepsy patients
before and after temporal lobe resections showed the superiority of AdaPro than
three other atlas-based methods, in terms of accuracy and e�ciency. Moreover,
AdaPro can segment new images in the native and reference image spaces.

Future work: One opportunity for future work is employing AdaPro to other
organs and imagingmodalities. More robust tissue classi�cation for other di�erent
anomalies could be also evaluated. To further increase the e�ciency of AdaPro,
one may investigate faster (and yet accurate) image registration methods.

7.2 �������� ��������� ��������� �� ������������ ��� ����
����� ��������������

While the human brain presents natural structural asymmetries between both
hemispheres, some neurological diseases, such as epilepsy, are associated with ab-
normal asymmetries. The simplest strategy to detect such anomalies consists of
a visual slice-by-slice inspection in a 3D brain image by one or multiple special-
ists. However, this manual analysis is very time-consuming, error-prone, and even
impracticable when a large amount of data needs to be processed.

Chapter 4 presented our �rst unsupervised solution regarding the research ques-
tions. The proposed automatic framework exploits convolutional autoencoders
(CAEs) and a one-class classi�er to model normal asymmetries from healthy sub-
jects, thus addressing RQ1. We then addressed RQ2 by using such a model to
detect outliers as abnormal asymmetries. We use the intermediate layers from
CAEs (latent features) to represent asymmetries (feature vector). As proof of con-
cept, we instantiated the framework to analyze hippocampal asymmetries from
3D patches around the hippocampi in both hemispheres. We also proposed an au-
tomatic method to localize these 3D patches, as well as a novel one-class classi�er
based on optimum-path forests.

We evaluated the framework using MR-T1 images from healthy subjects and
epilepsy patients with unilateral hippocampal atrophy. We considered two feature
spaces to train the classi�ers: the original one and a 2D space created by non-linear
projection. The latter facilitates the understanding of the data distribution, sample
inspection, and annotation of the detected anomaly type. Results reported high de-
tection scores, especially considering some di�cult cases that only a trained expert
can visually identify. Regarding our research questions, we therefore showed our
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�rst well-succeeded unsupervised solution to model normal brain asymmetries to
detect brain anomalies.
When extending the framework for the detection of brain asymmetries along

the entire hemispheres, however, the reported results were unsatisfactory. Exper-
iments showed poor results with several false-positive asymmetries detected for
all considered images. Also, such an extension did not detect true abnormal asym-
metries caused by lesions. All these limitations are directly related to the poor
estimation of 3D patches (size and location).
Putting together our experimental insights, the proposed autoencoder-based

framework is a robust solution for the asymmetry analysis of a speci�c structure
of interest, since one may (automatically or manually) design high-quality 3D
patches for it. Multiple analysis of general structures, with distinct shapes and
locations in the brain, should rely on one more precise volumes of interest, such
as supervoxels, which we next explored in this thesis.

Future work: The simplest possibility for future work involves performing the
proposed framework to other brain structures, organs, or di�erent medical imag-
ing modalities than MR-T1. The impressive results in the 2D projection space sug-
gest further investigating the impact of the projection in the design of classi�ers.
One could also explore fast projection algorithms to make the asymmetry analy-
sis in the two-dimensional space feasible for large-scale studies. Finally, one may
develop interactive visual tools to support the detection, inspection, annotation,
and identi�cation of brain anomalies based on abnormal asymmetries.

7.3 ������������ ���������������� �������� ����� ���������
���������

The limitations of analyzing asymmetries from 3D patches motivated us to explore
supervoxel segmentation to estimate more precise volumes of interests (VOIs). Su-
pervoxels are groups of voxels with similar characteristics resulting from an over-
segmentation of a 3D image or region of interest, which preserves intrinsic image
information (e.g., the borders of tissues and lesions).
Chapter 5 presented the key contribution of this thesis: a general fully unsuper-

vised framework for abnormal asymmetry detection based on supervoxel segmen-
tation, and specialized one-class per-supervoxel classi�ers for outlier detection
in the standard image space. Such a framework, called SAAD (Supervoxel-based
Abnormal Asymmetry Detection), uses brain asymmetries to guide the supervoxel
segmentation and extract a feature vector for each supervoxel. SAAD relies on a
novel method, so-called SymmISF, that extracts pairs of symmetric supervoxels in
both hemispheres for the subsequent analysis.
Chapter 5 provided an in-depth evaluation of SAAD to detect stroke lesions on

3DMR-T1 brain images by considering di�erent scenarios for supervoxel segmen-
tation, parameter optimization, and presenting a false-positive-attenuation strat-
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egy for SAAD. Experimental results showed that SAAD attained higher detection
scores and considerably lower false-positive rates than a state-of-the-art unsuper-
vised method (like ours). They also showed the e�ectivity of using a set of spe-
cialized per-supervoxel classi�er instead of a single global one. However, SAAD
is limited to detecting asymmetric anomalies in the hemispheres.

Additionally, Chapter 5 also introduced an extension of SAAD for abnormal
asymmetry detection in the native image space. We evaluated the new approach,
named N-SAAD (‘N’ stands for native), from a set of parameters empirically
obtained. N-SAAD presented competitive detection scores against an optimized
version of SAAD, with less false-positive rates.

Future work: All experimental insights in this thesis open several potential di-
rections for future work, as follows. One may further investigate other feature-
extraction techniques and one-class classi�ers to model better normal asymme-
tries for (N-)SAAD. Since false positives are problematic in both methods, one
should consider investigating di�erent attenuation strategies. Besides, an opti-
mization procedure should be performed for N-SAAD in other to improve its re-
sults further. Another worthwhile goal is using additional visual-analytics tech-
niques to �nd challenging cases where both methods fail to detect complex small-
scale lesions, and then support improving all the above possibilities for future
work.

Although our unsupervised approach can attain high detection accuracies, su-
pervised techniques are usually more accurate for speci�c tasks. However, these
methods require a large number of manually annotated training images, which is
absent for most medical image analysis problems. Thus, one interesting direction
is to use SAAD to facilitate data annotation for supervised problems, as follows.

One can initially perform SAAD on training images from patients with a given
anomaly (e.g., tumor). Next, an expert visually removes the false-positive detected
supervoxels and re�nes the segmentation of the remaining detected supervoxels if
needed. Resulting supervoxels form the gold-standard segmentation for the train-
ing images, which may then be used to train a supervised model for the target
problem. This novel data annotation process rely on considerably fewer user inter-
actions to yield a high-quality labeled dataset. One may still use these interactions
(expert’s inputs) to improve further the unsupervised anomaly detection of SAAD
via some visual-analytics technique.

7.4 ������� ������������ ���������� �������������� ���
������� ���������

SAAD is only designed to detect asymmetric lesions in the brain hemispheres.
Although SAAD uses brain asymmetries to guide the symmetrical supervoxel seg-
mentation and to extract features for the symmetrical supervoxels, its pipeline is
not strongly related to asymmetries. Thus, Chapter 6 presents a fully unsupervised
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framework that extends SAAD to detect lesions (symmetric or asymmetric) in the
hemispheres, cerebellum, and brainstem. This solution relies on any other saliency
map that emphasizes brain anomalies, instead of only brain asymmetries.
A saliency map is an image (or a heatmap) that indicates what is more important

to analyze in a given target image, according to a speci�c problem; in the context of
this thesis, brain anomalies. The proposed framework, called TUSCA (Towards Un-
supervised Supervoxel Classi�cation for Anomaly detection), uses saliencies to guide
the supervoxel segmentation and extract a feature vector for each supervoxel.
Chapter 6 presented and evaluated an instance of TUSCA, called BADRESC,

that considers registration errors as saliencies. Our premise was that the regis-
tration errors for anomalies are considerably di�erent from those registration
errors for healthy tissues. BADRESC reports slightly lower detection scores than
SAAD for hemispheric lesions, with similar false-positive scores. Nevertheless,
BADRESC can detect lesions in the cerebellum and brainstem with promising
results.

Future work: Since the only major requirement from TUSCA consists of having
all images aligned on the same coordinate space, one opportunity for future work
is to extend TUSCA to detect anomalies in other organs (e.g., lungs). Initially, one
could simply evaluate BADRESC in the other target organ or designing a speci�c
saliency map that emphasizes its lesions, taking into account speci�c characteris-
tics of these anomalies.
Like SAAD, one may investigate other feature-extraction techniques and one-

class classi�ers to model better registration errors or other saliencies. As estimat-
ing high-quality supervoxels that accurately cover the lesions is crucial for the ac-
curacy of TUSCA, one may also focus on improving this segmentation, especially
for complex small-scale lesions. Regarding BADRESC, an optimization procedure
should be performed to improve its results further. Finally, one may use some in-
stance of TUSCA to assist data annotation, as previously suggested for SAAD.
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ANOTAT IONS AND DEF IN I T IONS

ADAPRO Adaptive Probabilistic Atlas proposed for anoma-
lous brain image segmentation (Chapter 3).

AE Abbreviation of Autoencoders (Section 4.1).

ASYMMETRY MAP A 3D (volumetric) image with brain asymmetries
(Chapter 5).

ATLAS Pair of a source image and its segmentation mask
for objects of interest (Chapter 3).

AUTOENCODER A generative neural network for image reconstruc-
tion (Section 4.1).

BRAIN ASYMMETRY Anatomical di�erences between the two brain
hemispheres.

BADRESC An instance of the TUSCA framework for Brain
Anomaly Detection based on Registration Errors
and Supervoxel Classi�cation (Chapter 6).

CAE Convolutional Autoencoder (Section 4.1).

CEREBRUM The largest and uppermost of the brain contain-
ing the cerebral cortex of the two hemispheres as
well as several subcortical structures such as the
hippocampus (Section 2.1.1).

CONTROL IMAGE An image with no pathologies.

CSF Cerebrospinal �uid: it is a clear, colorless body
�uid found in the brain and spinal cord (Sec-
tion 2.1.2).

DETECTION A visual indication about the location of an object
of interest (e.g., an organ or lesion). It is commonly
de�ned as a simple 2D or 3D bounding box around
the object or a rough object segmentation mask of
it.

ELASTIX A popular software for (non)rigid image registra-
tion (Section 2.3.4).
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GM Gray Matter tissue present in the brain (Sec-
tion 2.1.1).

GOLD�STANDARD Term used to describe segmentation masks re-
sulting from fully manual or semi-automatic im-
age segmentation by one or multiple experts (Sec-
tion 3.1).

IFT Image Forest Transform framework commonly
used to design image processing operators (Sec-
tion 2.4).

ISF An Iterative Spanning Forest framework for super-
pixel and supervoxel segmentation (Section 2.6).

ISOTROPIC An image is isotropic if its pixel/voxel size is the
same in every dimension (Section 2.2.1).

MR�T1 T1 Magnetic-resonance image modality (Sec-
tion 1.1).

MRI Magnetic Resonance Imaging (Section 1.1).

MSP Mid-Sagittal Plane — the median vertical longitu-
dinal plane that approximately divides a bilaterally
symmetrical brain into right and left hemispheres
(Section 2.1.2).

N�SAAD Version of the SAAD method for analysis on the
native coordinate space of a given image (Sec-
tion 5.5).

NIS Native Image Space. It corresponds to the coordi-
nate space of a given image (Section 5.5).

OPF Optimum-Path Forest — A graph-based frame-
work designed for clustering and classi�cation
methods (Section 2.5).

PBM The proposed Patch-Based Model for VOI location
(Section 4.2.2).

REFERENCE IMAGE An image — commonly created by averaging sev-
eral control images — that is used as standard coor-
dinate space for image visualization and analysis.
Also known as template (Section 2.3.4).

ROI Region of Interest. Commonly a 2D bounding box
or a segmentation mask of a given object/region.
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SAAD Supervoxel-based Abnormal Asymmetry Detec-
tion method (Section 5.2).

SALIENCY MAP An image (or heatmap) that indicate what is more
important to analyze in a given target image
(Chapter 6) — in the context of this thesis, brain
anomalies.

SEGMENTATION Process of partitioning an image into multiple ob-
jects (segments) by precisely delineating their bor-
ders.

SIS Standard Image Space. It corresponds to the stan-
dard coordinate space commonly de�ned by a tem-
plate (Section 5.2).

SLICE A 2D image extracted from a 3D image along one
of its three orthogonal planes (Section 2.1.2).

SUPERPIXEL A group of pixels of a 2D image that shares com-
mon characteristics.

SUPERVOXEL Equivalent to superpixel but grouping voxels in a
3D image instead.

SYMMISF Symmetric ISF algorithm that extracts pairs of
symmetric supervoxels in objects e.g., brain hemi-
spheres (Section 5.2.3).

TEMPLATE Equivalent to Reference Image.

TUSCA Towards Unsupervised Supervoxel Classi�cation
for Anomaly detection — a general anomaly detec-
tion framework based on supervoxel classi�cation
(Chapter 6).

VOI Volume of Interest. Equivalent to ROI but for vol-
umes in 3D images.

WM White Matter tissue present in the brain (Sec-
tion 2.1.1).
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A key challenge in medical image analysis is the absence of publicly large an-
notated datasets for di�erent applications [11, 44, 147]. Annotations are problem-
dependent and typically consist of labels that categorize entire images (e.g., the
image is healthy or abnormal), bounding boxes around objects of interest (e.g.,
organs and anomalies), or the precise segmentation of these objects. Providing
annotations for 3D images is time-consuming since they require manually slice-
by-slice inspection or labeling by one or multiple experts. To answer our research
questions, we need datasets with isotropic 3DMR-T1 brain images from (i) healthy
subjects, and (ii) with anomalies of di�erent sizes (especially small ones) and their
gold-standard segmentation masks, as detailed next.

�.1 �������� ��������

This thesis has the collaboration of neurologists from the Neuroimaging Labora-
tory (LNI) at the University of Campinas (UNICAMP), Brazil, which are partic-
ularly interested in (i) investigating abnormal asymmetries in epilepsy patients,
and (ii) estimating morphometric measures for the hemispheres and cerebellum
of those patients. LNI has provided brain images of healthy subjects and epilepsy
patients from the Clinical Hospital at UNICAMP. Table 14 presents such datasets,
grouped according to the task they are used in this thesis: Brain segmentation
(Chapter 3), and Analysis of Hippocampal Asymmetries (Chapter 4).

�.2 ������ ��������

We next present the public datasets used to train and evaluate our supervoxel-
based approaches for anomaly detection, as detailed in Chapters 5 and 6.

������
CamCan dataset [220] has 653 3D MR-T1 images of 3T from healthy subjects be-
tween 18 and 88 years. For each 3D MR-T1 image, it also has a corresponding 3D
MR-T2 image, which we do not use in this thesis. To our knowledge, CamCan is
the largest public dataset with 3D control images acquired from di�erent scanners.

�����
Anatomical Tracings of Lesions After Stroke (ATLAS) public dataset release
1.2 [34] is a rather challenging dataset with a large variety of manually annotated
lesions and images acquired from di�erent scanners. It contains lesions ranging
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Table 14: In-house datasets used in this thesis for Brain Segmentation (top) and Analysis
of Hippocampal Asymmetries (bottom). A neurologist from LNI has carefully
delineated the cerebellum, right and left hemispheres of all brain-segmentation
datasets to build the gold-standard segmentation. There is no intersection among
the datasets presented in this table.

Name Description
No. of 

Images
Voxel Size 

(mm3)
Field 

Strength

B
ra

in
 S

e
g

m
e
n

ta
ti

o
n

HEALTHY-2T
Control images acquired with a 2T 
Elscint scanner.

19 0.98 × 0.98 × 0.98 2T

PRE-2T
Pre-operative images from epilepsy 
patients took with a 2T Elscint scanner. 
Each patient has one image.

20 0.98 × 0.98 × 0.98 2T

POST-2T
Post-operative images from the same 
patients of PRE-2T, after temporal lobe 
resection. Each patient has one image.

20 0.98 × 0.98 × 0.98 2T

HEALTHY-3T
Control images acquired with a 3T 
Siemens scanner.

20 1 × 1 × 1 3T

PRE-3T
Pre-operative images from epilepsy 
patients took with a 3T Siemens 
scanner. Each patient has one image.

30 1 × 1 × 1 3T

POST-3T
Post-operative images from the same 
patients of PRE-3T, after temporal lobe 
resection. Each patient has two image.

60 1 × 1 × 1 3T

A
n

a
ly

si
s 

o
f 

H
ip

p
o
c
a
m

p
a
l 

A
sy

m
m

e
tr

ie
s

CONTROLS

Control images (subjects are between 
25 and 65 years old) took with a 3T 
Siemens scanner. A neurologist from 
LNI has delineated the hippocampi of a 
subset of 60 images.

575 1 × 1 × 1 3T

PRE

Pre-operative images from epilepsy 
patients took with a 3T Siemens 
scanner. A neurologist A neurologist 
from LNI has carefully delineated the 
hippocampi of all images.

47 1 × 1 × 1 3T

POST

Post-operative images from epilepsy 
patients after temporal lobe resection 
took with a 3T Siemens scanner. A 
neurologist from LNI has carefully 
delineated the hippocampi of all images.

88 1 × 1 × 1 3T

RHA
Images from epilepsy patients with right
hippocampal atrophy, acquired with a 
3T Siemens scanner.

34 1 × 1 × 1 3T

LHA
Images from epilepsy patients with left 
hippocampal atrophy, acquired with a 
3T Siemens scanner.

37 1 × 1 × 1 3T

from very small to large ones, located in several parts of the brain. All images have
a mask with the primary stroke lesion. Some images also have additional masks
with other stroke lesions.
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Throughout this thesis, we present several methods for di�erent tasks related
to image analysis. All of these rely on computing some quantitative metric in
some step, e.g., for quantitative evaluation or �ne-tuning purposes. For instance,
the proposed autoencoder-based approach in Section 4.2 uses the mean squared
error as the loss function in the training. Moreover, we rely on di�erent metrics
to quantitatively compare our proposed methods against baselines in the experi-
ments. All these metrics are next detailed in this appendix.

Basic notation: Assume that a 3D grayscale image is de�ned as Î = (DI , I ), where
DI ⇢ Z 3 is the image domain — i.e., a set of elements in Z 3 denominated voxels
— and I (p) 2 Z is the gray value assigned to every voxel p 2 DI . Similarly, a bi-
nary mask B̂ = (DB,B), which describes a given object of interest, considers that
background voxels have label 0 and object voxels have label 1.

�.1 ����� ���������� ��������

For themetrics presented in this section, consider that wewant tomeasure the sim-
ilarity between two grayscale images, Î = (DI , I ) and �̂ = (D � , � ), where DI = D � .

�.1.1 Mean Square Error (MSE)

Mean Squared Error (MSE) measures the mean voxel-wise intensity di�erence (er-
ror) between two images. The higher is MSE, the more di�erent is such images.
MSE can be mathematically de�ned by

MSE(Î , �̂ ) = 1
|DI |

’
8p2DI

[I (p) � � (p)]2 , (C.1)

where |DI | is the number of voxels of Î , which is identical for �̂ .
We use MSE as the loss function in the training of our proposed autoencoder-

based solution for abnormal hippocampal asymmetry detection (Section 4.2). In
this case, we use MSE to compute the mean reconstruction errors for the training
images.

�.1.2 Normalized Mutual Information (NMI)

Normalized Mutual Information (NMI) scales the Mutual Information (MI) score
between 0 (no mutual information) and 1 (perfect correlation). The de�nition of
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NMI involves some other conceptsas detailed next.

Shannon Entropy (SE): It measures the dispersion of the gray values of an image
Î . For instance, a gray image Î that is entirely �lled by a single gray value has
SE(Î ) = 0. Mathematically, SE is given by

SE(Î ) = �
’
8x 2I

(px · logpx ), (C.2)

where I represents the set of gray values of Î , and px is the probability associated
with the gray value x , i.e., px is the frequency that x appears in Î divided by |DI |
(the total number of voxels of Î ). The log function in Eq. C.2 can be a log2 or a ln,
having the entropy units in bits (binary units) or nats (natural units), respectively.

Note that spatial information is not taken into account to compute SE. Conse-
quently, two di�erent images can have the same SE without conveying the same
visual information, as illustrated in Fig. C.1.

Figure C.1: Example of two di�erent grayscale images with the same Shannon Entropy.

Joint Intensity Histogram (JIH): It is a two-dimensional graphic where the
value assigned to each point (x,�) corresponds to the number of voxels with gray
value x in Î , whose corresponding voxels in �̂ have gray value � [223].

The frequencies from the joint intensity histogram can be used to calculate the
Shannon Entropy of that joint distribution of gray values. In this case, the mathe-
matical expression is de�ned as

SE(Î , �̂ ) = �
’

8(x ,�)2I⇥�
(px ,� · logpx ,� ), (C.3)

where px ,� represents the relative frequency of each point from the joint intensity
histogram between Î and �̂ .

Finally, Normalized Mutual Information can be de�ned by

NMI (Î , �̂ ) = SE(Î ) + SE( �̂ )
SE(Î , �̂ )

. (C.4)
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We use NMI for image registration (Section 2.3.4), and VOI localization (Sec-
tion 4.2). Some of the related work also uses NMI in their methods.

�.2 ������������ �������

For themetrics presented in this section, consider that wewant tomeasure the sim-
ilarity between a binary mask M̂ = (DM ,M), resulting from a given segmentation,
and its corresponding ground-truth binary mask Ĝ = (DG ,G), where DM = DG .
For simplicity, consider that M and G are the sets of object voxels for M̂ and Ĝ,
respectively. As such, |M | corresponds to the volume of the object from M̂ , for
example. Figs. C.2—C.3 illustrate the considered segmentation metrics.

M M ∩ G G

(a) Two binary images.

M ∩ G

M M ∩ G G

(b) IoU.

M G+

M ∩ G2 ×

(c) Dice.

Figure C.2: Illustration of IoU and Dice.

β(G)^

β(M)^

D1
D2

DN…D3

Figure C.3: Average Symmetric Surface Distance (ASSD). ASSD is calculated using the ob-
ject surfaces, �(M̂) and �(Ĝ), from two binary images, M̂ and Ĝ, respectively. For
each surface voxel from the object surface of M̂ , the Euclidean distance to the
closest surface voxel of Ĝ is calculated. The ASSD is the average of all distances
calculated from M̂ to Ĝ and Ĝ to M̂ .

�.2.1 Intersection over Union (IoU)

IoU, also known as Jaccard index, is a similarity metric between two regions, e.g.,
the objects of two binary images (Fig. C.2b). It is widely used in object detection
problems and ranges from 0 to 1, where a higher value indicates a better matching
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between the regions.We use IoU as the cost function of the parameter optimization
in Section 5.4.2. Formally, IoU is given by

IoU (M̂, Ĝ) = |M \G |
|M [G | . (C.5)

�.2.2 Dice

Sørensen–Dice coe�cient, or simply Dice score, is one of the evaluation metrics
most frequently used in medical image segmentation. It measures the amount of
overlap between the objects of two binary images (Fig. C.2c), with values within
[0, 1]with 1 indicating perfect segmentation (matching). We use Dice in this thesis
in the experiments from Chapters 3, 5, and 6. We can de�ne Dice as

Dice(M̂, Ĝ) = 2 |M \G |
|M | + |G | . (C.6)

Dice only gives a global similarity impression between the binary images, and can
over/underestimate the real level of matching between them.

�.2.3 Average Symmetric Surface Distance (ASSD)

ASSD is a measure based on the Euclidean distance between the object surfaces of
two binary images. ASSD can better capture local di�erences (e.g., segmentation
errors) along the segmented boundaries than Dice (Fig. C.4). We rely on ASSD for
the evaluation of the proposed brain image segmentation approach in Chapter 3.

(a) (b)

Figure C.4: Two cases with approximately equal Dice, but di�erent ASSD.

For each surface voxel from the object boundaries of M̂ , the Euclidean distance
to the closest surface voxel of Ĝ is calculated. The ASSD is the average of all dis-
tances calculated from M̂ to Ĝ and Ĝ to M̂ (Fig. C.3). Formally, we de�ne ASSD
by
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ASSD(M̂, Ĝ) = ASD(M̂, Ĝ) +ASD(Ĝ, M̂)
2

, (C.7)

whereASD(M̂, Ĝ) is the Average Surface Distance from M̂ to Ĝ. ASD is de�ned by

ASD(M̂, Ĝ) = 1
|�(Ĝ)|

·
’
8p2� (Ĝ)

E(p, �(M̂)), (C.8)

where �(Ĝ) is the object surface of Ĝ, |�(Ĝ)| denotes its number of voxels, and
E(p, �(M̂)) is the Euclidean distance from the voxel p to �(M̂), measured in the
direction of the local surface normal in �(M̂).
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